clevo-keyboard/src/uniwill_wmi.c

346 lines
9 KiB
C
Raw Normal View History

/*!
* Copyright (c) 2021 TUXEDO Computers GmbH <tux@tuxedocomputers.com>
*
* This file is part of tuxedo-keyboard.
*
* tuxedo-keyboard is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see <https://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/wmi.h>
#include <linux/version.h>
#include <linux/delay.h>
#include "uniwill_interfaces.h"
#define UNIWILL_EC_REG_LDAT 0x8a
#define UNIWILL_EC_REG_HDAT 0x8b
#define UNIWILL_EC_REG_FLAGS 0x8c
#define UNIWILL_EC_REG_CMDL 0x8d
#define UNIWILL_EC_REG_CMDH 0x8e
#define UNIWILL_EC_BIT_RFLG 0
#define UNIWILL_EC_BIT_WFLG 1
#define UNIWILL_EC_BIT_BFLG 2
#define UNIWILL_EC_BIT_CFLG 3
#define UNIWILL_EC_BIT_DRDY 7
#define UW_EC_WAIT_CYCLES 0x50
static bool uniwill_ec_direct = true;
DEFINE_MUTEX(uniwill_ec_lock);
static u32 uw_wmi_ec_evaluate(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, u8 read_flag, u32 *return_buffer)
{
acpi_status status;
union acpi_object *out_acpi;
u32 e_result = 0;
// Kernel buffer for input argument
u32 *wmi_arg = (u32 *) kmalloc(sizeof(u32)*10, GFP_KERNEL);
// Byte reference to the input buffer
u8 *wmi_arg_bytes = (u8 *) wmi_arg;
u8 wmi_instance = 0x00;
u32 wmi_method_id = 0x04;
struct acpi_buffer wmi_in = { (acpi_size) sizeof(wmi_arg), wmi_arg};
struct acpi_buffer wmi_out = { ACPI_ALLOCATE_BUFFER, NULL };
mutex_lock(&uniwill_ec_lock);
// Zero input buffer
memset(wmi_arg, 0x00, 10 * sizeof(u32));
// Configure the input buffer
wmi_arg_bytes[0] = addr_low;
wmi_arg_bytes[1] = addr_high;
wmi_arg_bytes[2] = data_low;
wmi_arg_bytes[3] = data_high;
if (read_flag != 0) {
wmi_arg_bytes[5] = 0x01;
}
status = wmi_evaluate_method(UNIWILL_WMI_MGMT_GUID_BC, wmi_instance, wmi_method_id, &wmi_in, &wmi_out);
out_acpi = (union acpi_object *) wmi_out.pointer;
if (out_acpi && out_acpi->type == ACPI_TYPE_BUFFER) {
memcpy(return_buffer, out_acpi->buffer.pointer, out_acpi->buffer.length);
} /* else if (out_acpi && out_acpi->type == ACPI_TYPE_INTEGER) {
e_result = (u32) out_acpi->integer.value;
}*/
if (ACPI_FAILURE(status)) {
pr_err("uniwill_wmi.h: Error evaluating method\n");
e_result = -EIO;
}
kfree(out_acpi);
kfree(wmi_arg);
mutex_unlock(&uniwill_ec_lock);
return e_result;
}
/**
* EC address read through WMI
*/
static u32 uw_ec_read_addr_wmi(u8 addr_low, u8 addr_high, union uw_ec_read_return *output)
{
u32 uw_data[10];
u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, 0x00, 0x00, 1, uw_data);
output->dword = uw_data[0];
// pr_debug("addr: 0x%02x%02x value: %0#4x (high: %0#4x) result: %d\n", addr_high, addr_low, output->bytes.data_low, output->bytes.data_high, ret);
return ret;
}
/**
* EC address write through WMI
*/
static u32 uw_ec_write_addr_wmi(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output)
{
u32 uw_data[10];
u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, data_low, data_high, 0, uw_data);
output->dword = uw_data[0];
return ret;
}
/**
* Direct EC address read
*/
static u32 uw_ec_read_addr_direct(u8 addr_low, u8 addr_high, union uw_ec_read_return *output)
{
u32 result;
u8 tmp, count, flags;
mutex_lock(&uniwill_ec_lock);
ec_write(UNIWILL_EC_REG_LDAT, addr_low);
ec_write(UNIWILL_EC_REG_HDAT, addr_high);
flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_RFLG);
ec_write(UNIWILL_EC_REG_FLAGS, flags);
// Wait for ready flag
count = UW_EC_WAIT_CYCLES;
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) {
msleep(1);
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
count -= 1;
}
if (count != 0) {
output->dword = 0;
ec_read(UNIWILL_EC_REG_CMDL, &tmp);
output->bytes.data_low = tmp;
ec_read(UNIWILL_EC_REG_CMDH, &tmp);
output->bytes.data_high = tmp;
result = 0;
} else {
output->dword = 0xfefefefe;
result = -EIO;
}
ec_write(UNIWILL_EC_REG_FLAGS, 0x00);
mutex_unlock(&uniwill_ec_lock);
// pr_debug("addr: 0x%02x%02x value: %0#4x result: %d\n", addr_high, addr_low, output->bytes.data_low, result);
return result;
}
static u32 uw_ec_write_addr_direct(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output)
{
u32 result = 0;
u8 tmp, count, flags;
mutex_lock(&uniwill_ec_lock);
ec_write(UNIWILL_EC_REG_LDAT, addr_low);
ec_write(UNIWILL_EC_REG_HDAT, addr_high);
ec_write(UNIWILL_EC_REG_CMDL, data_low);
ec_write(UNIWILL_EC_REG_CMDH, data_high);
flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_WFLG);
ec_write(UNIWILL_EC_REG_FLAGS, flags);
// Wait for ready flag
count = UW_EC_WAIT_CYCLES;
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) {
msleep(1);
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
count -= 1;
}
// Replicate wmi output depending on success
if (count != 0) {
output->bytes.addr_low = addr_low;
output->bytes.addr_high = addr_high;
output->bytes.data_low = data_low;
output->bytes.data_high = data_high;
result = 0;
} else {
output->dword = 0xfefefefe;
result = -EIO;
}
ec_write(UNIWILL_EC_REG_FLAGS, 0x00);
mutex_unlock(&uniwill_ec_lock);
return result;
}
u32 uw_wmi_read_ec_ram(u16 addr, u8 *data)
{
u32 result;
u8 addr_low, addr_high;
union uw_ec_read_return output;
if (IS_ERR_OR_NULL(data))
return -EINVAL;
addr_low = addr & 0xff;
addr_high = (addr >> 8) & 0xff;
if (uniwill_ec_direct) {
result = uw_ec_read_addr_direct(addr_low, addr_high, &output);
} else {
result = uw_ec_read_addr_wmi(addr_low, addr_high, &output);
}
*data = output.bytes.data_low;
return result;
}
u32 uw_wmi_write_ec_ram(u16 addr, u8 data)
{
u32 result;
u8 addr_low, addr_high, data_low, data_high;
union uw_ec_write_return output;
addr_low = addr & 0xff;
addr_high = (addr >> 8) & 0xff;
data_low = data;
data_high = 0x00;
if (uniwill_ec_direct)
result = uw_ec_write_addr_direct(addr_low, addr_high, data_low, data_high, &output);
else
result = uw_ec_write_addr_wmi(addr_low, addr_high, data_low, data_high, &output);
return result;
}
struct uniwill_interface_t uniwill_wmi_interface = {
.string_id = UNIWILL_INTERFACE_WMI_STRID,
.read_ec_ram = uw_wmi_read_ec_ram,
.write_ec_ram = uw_wmi_write_ec_ram
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 3, 0)
static int uniwill_wmi_probe(struct wmi_device *wdev)
#else
static int uniwill_wmi_probe(struct wmi_device *wdev, const void *dummy_context)
#endif
{
int status;
// Look for for GUIDs used on uniwill devices
status =
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_0) &&
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_1) &&
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_2) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BA) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BB) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BC);
if (!status) {
pr_debug("probe: At least one Uniwill GUID missing\n");
return -ENODEV;
}
uniwill_add_interface(&uniwill_wmi_interface);
pr_info("interface initialized\n");
return 0;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0)
static int uniwill_wmi_remove(struct wmi_device *wdev)
#else
static void uniwill_wmi_remove(struct wmi_device *wdev)
#endif
{
pr_debug("uniwill_wmi driver remove\n");
uniwill_remove_interface(&uniwill_wmi_interface);
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0)
return 0;
#endif
}
static void uniwill_wmi_notify(struct wmi_device *wdev, union acpi_object *obj)
{
u32 code;
if (!IS_ERR_OR_NULL(uniwill_wmi_interface.event_callb)) {
if (obj) {
if (obj->type == ACPI_TYPE_INTEGER) {
code = obj->integer.value;
// Execute registered callback
uniwill_wmi_interface.event_callb(code);
} else {
pr_debug("unknown event type - %d (%0#6x)\n", obj->type, obj->type);
}
} else {
pr_debug("expected ACPI object doesn't exist\n");
}
} else {
pr_debug("no registered callback\n");
}
}
static const struct wmi_device_id uniwill_wmi_device_ids[] = {
// Listing one should be enough, for a driver that "takes care of all anyways"
// also prevents probe (and handling) per "device"
{ .guid_string = UNIWILL_WMI_EVENT_GUID_2 },
{ }
};
static struct wmi_driver uniwill_wmi_driver = {
2021-09-07 21:44:00 +02:00
.driver = {
.name = UNIWILL_INTERFACE_WMI_STRID,
.owner = THIS_MODULE
},
.id_table = uniwill_wmi_device_ids,
.probe = uniwill_wmi_probe,
.remove = uniwill_wmi_remove,
.notify = uniwill_wmi_notify,
};
module_wmi_driver(uniwill_wmi_driver);
MODULE_AUTHOR("TUXEDO Computers GmbH <tux@tuxedocomputers.com>");
MODULE_DESCRIPTION("Driver for Uniwill WMI interface");
MODULE_VERSION("0.0.1");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(wmi, uniwill_wmi_device_ids);
MODULE_ALIAS_UNIWILL_WMI();