Merge branch 'uw-interface-modularization'

This commit is contained in:
Christoffer Sandberg 2021-09-24 21:11:09 +02:00
commit 22d450a144
17 changed files with 845 additions and 845 deletions

View file

@ -19,7 +19,8 @@
obj-m := ./src/tuxedo_keyboard.o \ obj-m := ./src/tuxedo_keyboard.o \
./src/clevo_wmi.o \ ./src/clevo_wmi.o \
./src/clevo_acpi.o \ ./src/clevo_acpi.o \
./src/tuxedo_io/tuxedo_io.o ./src/tuxedo_io/tuxedo_io.o \
./src/uniwill_wmi.o
PWD := $(shell pwd) PWD := $(shell pwd)
KDIR := /lib/modules/$(shell uname -r)/build KDIR := /lib/modules/$(shell uname -r)/build

View file

@ -58,11 +58,13 @@ case "$1" in
echo "(Re)load modules if possible" echo "(Re)load modules if possible"
rmmod tuxedo_io > /dev/null 2>&1 || true rmmod tuxedo_io > /dev/null 2>&1 || true
rmmod uniwill_wmi > /dev/null 2>&1 || true
rmmod clevo_wmi > /dev/null 2>&1 || true rmmod clevo_wmi > /dev/null 2>&1 || true
rmmod clevo_acpi > /dev/null 2>&1 || true rmmod clevo_acpi > /dev/null 2>&1 || true
rmmod tuxedo_keyboard > /dev/null 2>&1 || true rmmod tuxedo_keyboard > /dev/null 2>&1 || true
modprobe tuxedo_keyboard > /dev/null 2>&1 || true modprobe tuxedo_keyboard > /dev/null 2>&1 || true
modprobe uniwill_wmi > /dev/null 2>&1 || true
modprobe clevo_wmi > /dev/null 2>&1 || true modprobe clevo_wmi > /dev/null 2>&1 || true
modprobe clevo_acpi > /dev/null 2>&1 || true modprobe clevo_acpi > /dev/null 2>&1 || true
modprobe tuxedo_io > /dev/null 2>&1 || true modprobe tuxedo_io > /dev/null 2>&1 || true

View file

@ -17,6 +17,10 @@ DEST_MODULE_LOCATION[3]="/kernel/lib/"
BUILT_MODULE_NAME[3]="tuxedo_io" BUILT_MODULE_NAME[3]="tuxedo_io"
BUILT_MODULE_LOCATION[3]="src/tuxedo_io" BUILT_MODULE_LOCATION[3]="src/tuxedo_io"
DEST_MODULE_LOCATION[4]="/kernel/lib/"
BUILT_MODULE_NAME[4]="uniwill_wmi"
BUILT_MODULE_LOCATION[4]="src/"
MAKE[0]="make KDIR=/lib/modules/${kernelver}/build" MAKE[0]="make KDIR=/lib/modules/${kernelver}/build"
CLEAN="make clean" CLEAN="make clean"
AUTOINSTALL="yes" AUTOINSTALL="yes"

View file

@ -101,7 +101,7 @@ u32 clevo_acpi_interface_method_call(u8 cmd, u32 arg, u32 *result_value)
} }
struct clevo_interface_t clevo_acpi_interface = { struct clevo_interface_t clevo_acpi_interface = {
.string_id = "clevo_acpi", .string_id = CLEVO_INTERFACE_ACPI_STRID,
.method_call = clevo_acpi_interface_method_call, .method_call = clevo_acpi_interface_method_call,
}; };
@ -123,9 +123,6 @@ static int clevo_acpi_add(struct acpi_device *device)
// Add this interface // Add this interface
clevo_keyboard_add_interface(&clevo_acpi_interface); clevo_keyboard_add_interface(&clevo_acpi_interface);
// Initiate clevo keyboard, if not already loaded by other interface driver
clevo_keyboard_init();
pr_info("interface initialized\n"); pr_info("interface initialized\n");
return 0; return 0;
@ -195,7 +192,7 @@ module_acpi_driver(clevo_acpi_driver);
MODULE_AUTHOR("TUXEDO Computers GmbH <tux@tuxedocomputers.com>"); MODULE_AUTHOR("TUXEDO Computers GmbH <tux@tuxedocomputers.com>");
MODULE_DESCRIPTION("Driver for Clevo ACPI interface"); MODULE_DESCRIPTION("Driver for Clevo ACPI interface");
MODULE_VERSION("0.0.2"); MODULE_VERSION("0.0.3");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(acpi, clevo_acpi_device_ids); MODULE_DEVICE_TABLE(acpi, clevo_acpi_device_ids);

View file

@ -16,8 +16,8 @@
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this software. If not, see <https://www.gnu.org/licenses/>. * along with this software. If not, see <https://www.gnu.org/licenses/>.
*/ */
#ifndef TUXEDO_INTERFACES_H #ifndef CLEVO_INTERFACES_H
#define TUXEDO_INTERFACES_H #define CLEVO_INTERFACES_H
#include <linux/types.h> #include <linux/types.h>
@ -48,8 +48,6 @@
#define CLEVO_CMD_OPT 0x79 #define CLEVO_CMD_OPT 0x79
#define CLEVO_OPT_SUBCMD_SET_PERF_PROF 0x19 #define CLEVO_OPT_SUBCMD_SET_PERF_PROF 0x19
int clevo_keyboard_init(void);
struct clevo_interface_t { struct clevo_interface_t {
char *string_id; char *string_id;
void (*event_callb)(u32); void (*event_callb)(u32);
@ -65,6 +63,9 @@ u32 clevo_get_active_interface_id(char **id_str);
MODULE_ALIAS("wmi:" CLEVO_WMI_EVENT_GUID); \ MODULE_ALIAS("wmi:" CLEVO_WMI_EVENT_GUID); \
MODULE_ALIAS("wmi:" CLEVO_WMI_METHOD_GUID); MODULE_ALIAS("wmi:" CLEVO_WMI_METHOD_GUID);
#define CLEVO_INTERFACE_WMI_STRID "clevo_wmi"
#define CLEVO_INTERFACE_ACPI_STRID "clevo_acpi"
#define MODULE_ALIAS_CLEVO_ACPI() \ #define MODULE_ALIAS_CLEVO_ACPI() \
MODULE_ALIAS("acpi*:" CLEVO_ACPI_RESOURCE_HID ":*"); MODULE_ALIAS("acpi*:" CLEVO_ACPI_RESOURCE_HID ":*");

View file

@ -54,6 +54,8 @@
#define CLEVO_EVENT_RFKILL1 0x85 #define CLEVO_EVENT_RFKILL1 0x85
#define CLEVO_EVENT_RFKILL2 0x86 #define CLEVO_EVENT_RFKILL2 0x86
struct tuxedo_keyboard_driver clevo_keyboard_driver;
static struct clevo_interfaces_t { static struct clevo_interfaces_t {
struct clevo_interface_t *wmi; struct clevo_interface_t *wmi;
struct clevo_interface_t *acpi; struct clevo_interface_t *acpi;
@ -70,7 +72,7 @@ u32 clevo_keyboard_add_interface(struct clevo_interface_t *new_interface)
{ {
mutex_lock(&clevo_keyboard_interface_modification_lock); mutex_lock(&clevo_keyboard_interface_modification_lock);
if (strcmp(new_interface->string_id, "clevo_wmi") == 0) { if (strcmp(new_interface->string_id, CLEVO_INTERFACE_WMI_STRID) == 0) {
clevo_interfaces.wmi = new_interface; clevo_interfaces.wmi = new_interface;
clevo_interfaces.wmi->event_callb = clevo_keyboard_event_callb; clevo_interfaces.wmi->event_callb = clevo_keyboard_event_callb;
@ -82,7 +84,7 @@ u32 clevo_keyboard_add_interface(struct clevo_interface_t *new_interface)
active_clevo_interface = clevo_interfaces.wmi; active_clevo_interface = clevo_interfaces.wmi;
} }
} else if (strcmp(new_interface->string_id, "clevo_acpi") == 0) { } else if (strcmp(new_interface->string_id, CLEVO_INTERFACE_ACPI_STRID) == 0) {
clevo_interfaces.acpi = new_interface; clevo_interfaces.acpi = new_interface;
clevo_interfaces.acpi->event_callb = clevo_keyboard_event_callb; clevo_interfaces.acpi->event_callb = clevo_keyboard_event_callb;
@ -98,6 +100,9 @@ u32 clevo_keyboard_add_interface(struct clevo_interface_t *new_interface)
mutex_unlock(&clevo_keyboard_interface_modification_lock); mutex_unlock(&clevo_keyboard_interface_modification_lock);
if (active_clevo_interface != NULL)
tuxedo_keyboard_init_driver(&clevo_keyboard_driver);
return 0; return 0;
} }
EXPORT_SYMBOL(clevo_keyboard_add_interface); EXPORT_SYMBOL(clevo_keyboard_add_interface);
@ -106,17 +111,20 @@ u32 clevo_keyboard_remove_interface(struct clevo_interface_t *interface)
{ {
mutex_lock(&clevo_keyboard_interface_modification_lock); mutex_lock(&clevo_keyboard_interface_modification_lock);
if (strcmp(interface->string_id, "clevo_wmi") == 0) { if (strcmp(interface->string_id, CLEVO_INTERFACE_WMI_STRID) == 0) {
clevo_interfaces.wmi = NULL; clevo_interfaces.wmi = NULL;
} else if (strcmp(interface->string_id, "clevo_acpi") == 0) { } else if (strcmp(interface->string_id, CLEVO_INTERFACE_ACPI_STRID) == 0) {
clevo_interfaces.acpi = NULL; clevo_interfaces.acpi = NULL;
} else { } else {
mutex_unlock(&clevo_keyboard_interface_modification_lock); mutex_unlock(&clevo_keyboard_interface_modification_lock);
return -EINVAL; return -EINVAL;
} }
if (active_clevo_interface == interface) if (active_clevo_interface == interface) {
tuxedo_keyboard_remove_driver(&clevo_keyboard_driver);
active_clevo_interface = NULL; active_clevo_interface = NULL;
}
mutex_unlock(&clevo_keyboard_interface_modification_lock); mutex_unlock(&clevo_keyboard_interface_modification_lock);
@ -124,8 +132,6 @@ u32 clevo_keyboard_remove_interface(struct clevo_interface_t *interface)
} }
EXPORT_SYMBOL(clevo_keyboard_remove_interface); EXPORT_SYMBOL(clevo_keyboard_remove_interface);
struct tuxedo_keyboard_driver clevo_keyboard_driver;
static struct key_entry clevo_keymap[] = { static struct key_entry clevo_keymap[] = {
// Keyboard backlight (RGB versions) // Keyboard backlight (RGB versions)
{ KE_KEY, CLEVO_EVENT_DECREASE_BACKLIGHT, { KEY_KBDILLUMDOWN } }, { KE_KEY, CLEVO_EVENT_DECREASE_BACKLIGHT, { KEY_KBDILLUMDOWN } },
@ -299,7 +305,7 @@ static ssize_t show_hasextra_fs(struct device *child,
u32 clevo_evaluate_method(u8 cmd, u32 arg, u32 *result) u32 clevo_evaluate_method(u8 cmd, u32 arg, u32 *result)
{ {
if (IS_ERR_OR_NULL(active_clevo_interface)) { if (IS_ERR_OR_NULL(active_clevo_interface)) {
pr_err("clevo_keyboard: no active interface\n"); pr_err("clevo_keyboard: no active interface while attempting cmd %02x arg %08x\n", cmd, arg);
return -ENODEV; return -ENODEV;
} }
return active_clevo_interface->method_call(cmd, arg, result); return active_clevo_interface->method_call(cmd, arg, result);
@ -705,9 +711,65 @@ void clevo_keyboard_write_state(void)
set_enabled(kbd_led_state.enabled); set_enabled(kbd_led_state.enabled);
} }
static int clevo_keyboard_probe_only_init(struct platform_device *dev) /**
* strstr version of dmi_match
*/
static bool dmi_string_in(enum dmi_field f, const char *str)
{
const char *info = dmi_get_system_info(f);
if (info == NULL || str == NULL)
return info == str;
return strstr(info, str) != NULL;
}
int clevo_keyboard_init(void)
{
bool performance_profile_set_workaround;
// Init state from params
kbd_led_state.color.left = param_color_left;
kbd_led_state.color.center = param_color_center;
kbd_led_state.color.right = param_color_right;
kbd_led_state.color.extra = param_color_extra;
kbd_led_state.blinking_pattern = param_blinking_pattern;
if (param_brightness > BRIGHTNESS_MAX) param_brightness = BRIGHTNESS_DEFAULT;
kbd_led_state.brightness = param_brightness;
kbd_led_state.enabled = param_state;
clevo_keyboard_write_state();
// Workaround for firmware issue not setting selected performance profile.
// Explicitly set "performance" perf. profile on init regardless of what is chosen
// for these devices (Aura, XP14, IBS14v5)
performance_profile_set_workaround = false
|| dmi_string_in(DMI_BOARD_NAME, "AURA1501")
|| dmi_string_in(DMI_BOARD_NAME, "EDUBOOK1502")
|| dmi_string_in(DMI_BOARD_NAME, "NL5xRU")
|| dmi_string_in(DMI_BOARD_NAME, "NV4XMB,ME,MZ")
|| dmi_string_in(DMI_BOARD_NAME, "L140CU")
|| dmi_string_in(DMI_BOARD_NAME, "NS50MU")
|| dmi_string_in(DMI_BOARD_NAME, "PCX0DX")
|| dmi_string_in(DMI_BOARD_NAME, "PCx0Dx_GN20")
|| dmi_string_in(DMI_BOARD_NAME, "L14xMU")
;
if (performance_profile_set_workaround) {
TUXEDO_INFO("Performance profile 'performance' set workaround applied\n");
clevo_evaluate_method(0x79, 0x19000002, NULL);
}
return 0;
}
static int clevo_keyboard_probe(struct platform_device *dev)
{ {
clevo_keyboard_init_device_interface(dev); clevo_keyboard_init_device_interface(dev);
clevo_keyboard_init();
return 0; return 0;
} }
@ -759,66 +821,8 @@ static struct platform_driver platform_driver_clevo = {
}, },
}; };
struct tuxedo_keyboard_driver clevo_keyboard_driver_v2 = { struct tuxedo_keyboard_driver clevo_keyboard_driver = {
.platform_driver = &platform_driver_clevo, .platform_driver = &platform_driver_clevo,
.probe = clevo_keyboard_probe_only_init, .probe = clevo_keyboard_probe,
.key_map = clevo_keymap, .key_map = clevo_keymap,
}; };
/**
* strstr version of dmi_match
*/
static bool dmi_string_in(enum dmi_field f, const char *str)
{
const char *info = dmi_get_system_info(f);
if (info == NULL || str == NULL)
return info == str;
return strstr(info, str) != NULL;
}
int clevo_keyboard_init(void)
{
bool performance_profile_set_workaround;
if (IS_ERR_OR_NULL(tuxedo_keyboard_init_driver(&clevo_keyboard_driver_v2)))
return -EEXIST;
// Init state from params
kbd_led_state.color.left = param_color_left;
kbd_led_state.color.center = param_color_center;
kbd_led_state.color.right = param_color_right;
kbd_led_state.color.extra = param_color_extra;
kbd_led_state.blinking_pattern = param_blinking_pattern;
if (param_brightness > BRIGHTNESS_MAX) param_brightness = BRIGHTNESS_DEFAULT;
kbd_led_state.brightness = param_brightness;
kbd_led_state.enabled = param_state;
clevo_keyboard_write_state();
// Workaround for firmware issue not setting selected performance profile.
// Explicitly set "performance" perf. profile on init regardless of what is chosen
// for these devices (Aura, XP14, IBS14v5)
performance_profile_set_workaround = false
|| dmi_string_in(DMI_BOARD_NAME, "AURA1501")
|| dmi_string_in(DMI_BOARD_NAME, "EDUBOOK1502")
|| dmi_string_in(DMI_BOARD_NAME, "NL5xRU")
|| dmi_string_in(DMI_BOARD_NAME, "NV4XMB,ME,MZ")
|| dmi_string_in(DMI_BOARD_NAME, "L140CU")
|| dmi_string_in(DMI_BOARD_NAME, "NS50MU")
|| dmi_string_in(DMI_BOARD_NAME, "PCX0DX")
|| dmi_string_in(DMI_BOARD_NAME, "PCx0Dx_GN20")
|| dmi_string_in(DMI_BOARD_NAME, "L14xMU")
;
if (performance_profile_set_workaround) {
TUXEDO_INFO("Performance profile 'performance' set workaround applied\n");
clevo_evaluate_method(0x79, 0x19000002, NULL);
}
return 0;
}
EXPORT_SYMBOL(clevo_keyboard_init);

View file

@ -70,7 +70,7 @@ u32 clevo_wmi_interface_method_call(u8 cmd, u32 arg, u32 *result_value)
} }
struct clevo_interface_t clevo_wmi_interface = { struct clevo_interface_t clevo_wmi_interface = {
.string_id = "clevo_wmi", .string_id = CLEVO_INTERFACE_WMI_STRID,
.method_call = clevo_wmi_interface_method_call, .method_call = clevo_wmi_interface_method_call,
}; };
@ -110,9 +110,6 @@ static int clevo_wmi_probe(struct wmi_device *wdev, const void *dummy_context)
// Add this interface // Add this interface
clevo_keyboard_add_interface(&clevo_wmi_interface); clevo_keyboard_add_interface(&clevo_wmi_interface);
// Initiate clevo keyboard, if not already loaded by other interface driver
clevo_keyboard_init();
pr_info("interface initialized\n"); pr_info("interface initialized\n");
return 0; return 0;
@ -125,6 +122,7 @@ static void clevo_wmi_remove(struct wmi_device *wdev)
#endif #endif
{ {
pr_debug("clevo_wmi driver remove\n"); pr_debug("clevo_wmi driver remove\n");
clevo_keyboard_remove_interface(&clevo_wmi_interface);
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0) #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0)
return 0; return 0;
#endif #endif
@ -149,7 +147,10 @@ static const struct wmi_device_id clevo_wmi_device_ids[] = {
}; };
static struct wmi_driver clevo_wmi_driver = { static struct wmi_driver clevo_wmi_driver = {
.driver = { .name = "clevo_wmi", .owner = THIS_MODULE }, .driver = {
.name = CLEVO_INTERFACE_WMI_STRID,
.owner = THIS_MODULE
},
.id_table = clevo_wmi_device_ids, .id_table = clevo_wmi_device_ids,
.probe = clevo_wmi_probe, .probe = clevo_wmi_probe,
.remove = clevo_wmi_remove, .remove = clevo_wmi_remove,
@ -160,7 +161,7 @@ module_wmi_driver(clevo_wmi_driver);
MODULE_AUTHOR("TUXEDO Computers GmbH <tux@tuxedocomputers.com>"); MODULE_AUTHOR("TUXEDO Computers GmbH <tux@tuxedocomputers.com>");
MODULE_DESCRIPTION("Driver for Clevo WMI interface"); MODULE_DESCRIPTION("Driver for Clevo WMI interface");
MODULE_VERSION("0.0.3"); MODULE_VERSION("0.0.4");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(wmi, clevo_wmi_device_ids); MODULE_DEVICE_TABLE(wmi, clevo_wmi_device_ids);

View file

@ -1,359 +0,0 @@
/*!
* Copyright (c) 2020 TUXEDO Computers GmbH <tux@tuxedocomputers.com>
*
* This file is part of tuxedo-io.
*
* tuxedo-io is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef TONGFANG_WMI_H
#define TONGFANG_WMI_H
#include <linux/acpi.h>
#include <linux/wmi.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#define UNIWILL_WMI_MGMT_GUID_BA "ABBC0F6D-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_MGMT_GUID_BB "ABBC0F6E-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_MGMT_GUID_BC "ABBC0F6F-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_EVENT_GUID_0 "ABBC0F70-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_EVENT_GUID_1 "ABBC0F71-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_EVENT_GUID_2 "ABBC0F72-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_EC_REG_LDAT 0x8a
#define UNIWILL_EC_REG_HDAT 0x8b
#define UNIWILL_EC_REG_FLAGS 0x8c
#define UNIWILL_EC_REG_CMDL 0x8d
#define UNIWILL_EC_REG_CMDH 0x8e
#define UNIWILL_EC_BIT_RFLG 0
#define UNIWILL_EC_BIT_WFLG 1
#define UNIWILL_EC_BIT_BFLG 2
#define UNIWILL_EC_BIT_CFLG 3
#define UNIWILL_EC_BIT_DRDY 7
#define UW_EC_WAIT_CYCLES 0x50
union uw_ec_read_return {
u32 dword;
struct {
u8 data_low;
u8 data_high;
} bytes;
};
union uw_ec_write_return {
u32 dword;
struct {
u8 addr_low;
u8 addr_high;
u8 data_low;
u8 data_high;
} bytes;
};
static bool uniwill_ec_direct = true;
DEFINE_MUTEX(uniwill_ec_lock);
static u32 uw_wmi_ec_evaluate(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, u8 read_flag, u32 *return_buffer)
{
acpi_status status;
union acpi_object *out_acpi;
u32 e_result = 0;
// Kernel buffer for input argument
u32 *wmi_arg = (u32 *) kmalloc(sizeof(u32)*10, GFP_KERNEL);
// Byte reference to the input buffer
u8 *wmi_arg_bytes = (u8 *) wmi_arg;
u8 wmi_instance = 0x00;
u32 wmi_method_id = 0x04;
struct acpi_buffer wmi_in = { (acpi_size) sizeof(wmi_arg), wmi_arg};
struct acpi_buffer wmi_out = { ACPI_ALLOCATE_BUFFER, NULL };
mutex_lock(&uniwill_ec_lock);
// Zero input buffer
memset(wmi_arg, 0x00, 10 * sizeof(u32));
// Configure the input buffer
wmi_arg_bytes[0] = addr_low;
wmi_arg_bytes[1] = addr_high;
wmi_arg_bytes[2] = data_low;
wmi_arg_bytes[3] = data_high;
if (read_flag != 0) {
wmi_arg_bytes[5] = 0x01;
}
status = wmi_evaluate_method(UNIWILL_WMI_MGMT_GUID_BC, wmi_instance, wmi_method_id, &wmi_in, &wmi_out);
out_acpi = (union acpi_object *) wmi_out.pointer;
if (out_acpi && out_acpi->type == ACPI_TYPE_BUFFER) {
memcpy(return_buffer, out_acpi->buffer.pointer, out_acpi->buffer.length);
} /* else if (out_acpi && out_acpi->type == ACPI_TYPE_INTEGER) {
e_result = (u32) out_acpi->integer.value;
}*/
if (ACPI_FAILURE(status)) {
pr_err("uniwill_wmi.h: Error evaluating method\n");
e_result = -EIO;
}
kfree(out_acpi);
kfree(wmi_arg);
mutex_unlock(&uniwill_ec_lock);
return e_result;
}
/**
* EC address read through WMI
*/
static u32 uw_ec_read_addr_wmi(u8 addr_low, u8 addr_high, union uw_ec_read_return *output)
{
u32 uw_data[10];
u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, 0x00, 0x00, 1, uw_data);
output->dword = uw_data[0];
// pr_debug("addr: 0x%02x%02x value: %0#4x (high: %0#4x) result: %d\n", addr_high, addr_low, output->bytes.data_low, output->bytes.data_high, ret);
return ret;
}
/**
* EC address write through WMI
*/
static u32 uw_ec_write_addr_wmi(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output)
{
u32 uw_data[10];
u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, data_low, data_high, 0, uw_data);
output->dword = uw_data[0];
return ret;
}
/**
* Direct EC address read
*/
static u32 uw_ec_read_addr_direct(u8 addr_low, u8 addr_high, union uw_ec_read_return *output)
{
u32 result;
u8 tmp, count, flags;
mutex_lock(&uniwill_ec_lock);
ec_write(UNIWILL_EC_REG_LDAT, addr_low);
ec_write(UNIWILL_EC_REG_HDAT, addr_high);
flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_RFLG);
ec_write(UNIWILL_EC_REG_FLAGS, flags);
// Wait for ready flag
count = UW_EC_WAIT_CYCLES;
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) {
msleep(1);
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
count -= 1;
}
if (count != 0) {
output->dword = 0;
ec_read(UNIWILL_EC_REG_CMDL, &tmp);
output->bytes.data_low = tmp;
ec_read(UNIWILL_EC_REG_CMDH, &tmp);
output->bytes.data_high = tmp;
result = 0;
} else {
output->dword = 0xfefefefe;
result = -EIO;
}
ec_write(UNIWILL_EC_REG_FLAGS, 0x00);
mutex_unlock(&uniwill_ec_lock);
// pr_debug("addr: 0x%02x%02x value: %0#4x result: %d\n", addr_high, addr_low, output->bytes.data_low, result);
return result;
}
static u32 uw_ec_write_addr_direct(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output)
{
u32 result = 0;
u8 tmp, count, flags;
mutex_lock(&uniwill_ec_lock);
ec_write(UNIWILL_EC_REG_LDAT, addr_low);
ec_write(UNIWILL_EC_REG_HDAT, addr_high);
ec_write(UNIWILL_EC_REG_CMDL, data_low);
ec_write(UNIWILL_EC_REG_CMDH, data_high);
flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_WFLG);
ec_write(UNIWILL_EC_REG_FLAGS, flags);
// Wait for ready flag
count = UW_EC_WAIT_CYCLES;
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) {
msleep(1);
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
count -= 1;
}
// Replicate wmi output depending on success
if (count != 0) {
output->bytes.addr_low = addr_low;
output->bytes.addr_high = addr_high;
output->bytes.data_low = data_low;
output->bytes.data_high = data_high;
result = 0;
} else {
output->dword = 0xfefefefe;
result = -EIO;
}
ec_write(UNIWILL_EC_REG_FLAGS, 0x00);
mutex_unlock(&uniwill_ec_lock);
return result;
}
u32 uw_ec_read_addr(u8 addr_low, u8 addr_high, union uw_ec_read_return *output)
{
if (uniwill_ec_direct) {
return uw_ec_read_addr_direct(addr_low, addr_high, output);
} else {
return uw_ec_read_addr_wmi(addr_low, addr_high, output);
}
}
EXPORT_SYMBOL(uw_ec_read_addr);
u32 uw_ec_write_addr(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output)
{
if (uniwill_ec_direct) {
return uw_ec_write_addr_direct(addr_low, addr_high, data_low, data_high, output);
} else {
return uw_ec_write_addr_wmi(addr_low, addr_high, data_low, data_high, output);
}
}
EXPORT_SYMBOL(uw_ec_write_addr);
static u32 uniwill_identify(void)
{
int status;
// Look for for GUIDs used on uniwill devices
status =
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_0) &&
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_1) &&
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_2) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BA) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BB) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BC);
if (!status)
{
pr_debug("probe: At least one Uniwill GUID missing\n");
return -ENODEV;
}
return 0;
}
static void uniwill_init(void)
{
u32 i;
union uw_ec_read_return reg_read_return;
union uw_ec_write_return reg_write_return;
// FIXME Hard set balanced profile until we have implemented a way to
// switch it while tuxedo_io is loaded
uw_ec_write_addr(0x51, 0x07, 0x00, 0x00, &reg_write_return);
// Set manual-mode fan-curve in 0x0743 - 0x0747
// Some kind of default fan-curve is stored in 0x0786 - 0x078a: Using it to initialize manual-mode fan-curve
for (i = 0; i < 5; ++i) {
uw_ec_read_addr(0x86 + i, 0x07, &reg_read_return);
uw_ec_write_addr(0x43 + i, 0x07, reg_read_return.bytes.data_low, 0x00, &reg_write_return);
}
// Enable manual mode
uw_ec_write_addr(0x41, 0x07, 0x01, 0x00, &reg_write_return);
// Zero second fan temp for detection
uw_ec_write_addr(0x4f, 0x04, 0x00, 0x00, &reg_write_return);
}
static void uniwill_exit(void)
{
union uw_ec_write_return reg_write_return;
// Disable manual mode
uw_ec_write_addr(0x41, 0x07, 0x00, 0x00, &reg_write_return);
}
static u32 uw_set_fan(u32 fan_index, u8 fan_speed)
{
u8 reg_low, reg_high = 0x18;
u32 i;
union uw_ec_read_return reg_read_return;
union uw_ec_write_return reg_write_return;
u8 low_reg_fan0 = 0x04;
u8 low_reg_fan1 = 0x09;
if (fan_index == 0)
reg_low = low_reg_fan0;
else if (fan_index == 1)
reg_low = low_reg_fan1;
else
return -EINVAL;
// Check current mode
uw_ec_read_addr(0x51, 0x07, &reg_read_return);
if (!(reg_read_return.bytes.data_low & 0x40)) {
// If not "full fan mode" (i.e. 0x40 bit set) switch to it (required for fancontrol)
uw_ec_write_addr(0x51, 0x07, reg_read_return.bytes.data_low | 0x40, 0x00, &reg_write_return);
// Attempt to write both fans as quick as possible before complete ramp-up
pr_debug("prevent ramp-up start\n");
for (i = 0; i < 10; ++i) {
uw_ec_write_addr(low_reg_fan0, reg_high, fan_speed & 0xff, 0x00, &reg_write_return);
uw_ec_write_addr(low_reg_fan1, reg_high, fan_speed & 0xff, 0x00, &reg_write_return);
msleep(10);
}
pr_debug("prevent ramp-up done\n");
} else {
// Otherwise just set the chosen fan
uw_ec_write_addr(reg_low, reg_high, fan_speed & 0xff, 0x00, &reg_write_return);
}
return 0;
}
static u32 uw_set_fan_auto(void)
{
union uw_ec_read_return reg_read_return;
union uw_ec_write_return reg_write_return;
// Get current mode
uw_ec_read_addr(0x51, 0x07, &reg_read_return);
// Switch off "full fan mode" (i.e. unset 0x40 bit)
uw_ec_write_addr(0x51, 0x07, reg_read_return.bytes.data_low & 0xbf, 0x00, &reg_write_return);
return 0;
}
#endif

View file

@ -27,7 +27,7 @@
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include <linux/delay.h> #include <linux/delay.h>
#include "../clevo_interfaces.h" #include "../clevo_interfaces.h"
#include "tongfang_wmi.h" #include "../uniwill_interfaces.h"
#include "tuxedo_io_ioctl.h" #include "tuxedo_io_ioctl.h"
MODULE_DESCRIPTION("Hardware interface for TUXEDO laptops"); MODULE_DESCRIPTION("Hardware interface for TUXEDO laptops");
@ -50,6 +50,11 @@ static u32 clevo_identify(void)
return clevo_get_active_interface_id(NULL) == 0 ? 1 : 0; return clevo_get_active_interface_id(NULL) == 0 ? 1 : 0;
} }
static u32 uniwill_identify(void)
{
return uniwill_get_active_interface_id(NULL) == 0 ? 1 : 0;
}
/*static int fop_open(struct inode *inode, struct file *file) /*static int fop_open(struct inode *inode, struct file *file)
{ {
return 0; return 0;
@ -151,11 +156,61 @@ static long clevo_ioctl_interface(struct file *file, unsigned int cmd, unsigned
return 0; return 0;
} }
static u32 uw_set_fan(u32 fan_index, u8 fan_speed)
{
u32 i;
u8 mode_data;
u16 addr_fan0 = 0x1804;
u16 addr_fan1 = 0x1809;
u16 addr_for_fan;
if (fan_index == 0)
addr_for_fan = addr_fan0;
else if (fan_index == 1)
addr_for_fan = addr_fan1;
else
return -EINVAL;
// Check current mode
uniwill_read_ec_ram(0x0751, &mode_data);
if (!(mode_data & 0x40)) {
// If not "full fan mode" (i.e. 0x40 bit set) switch to it (required for fancontrol)
uniwill_write_ec_ram(0x0751, mode_data | 0x40);
// Attempt to write both fans as quick as possible before complete ramp-up
pr_debug("prevent ramp-up start\n");
for (i = 0; i < 10; ++i) {
uniwill_write_ec_ram(addr_fan0, fan_speed & 0xff);
uniwill_write_ec_ram(addr_fan1, fan_speed & 0xff);
msleep(10);
}
pr_debug("prevent ramp-up done\n");
} else {
// Otherwise just set the chosen fan
uniwill_write_ec_ram(addr_for_fan, fan_speed & 0xff);
}
return 0;
}
static u32 uw_set_fan_auto(void)
{
u8 mode_data;
// Get current mode
uniwill_read_ec_ram(0x0751, &mode_data);
// Switch off "full fan mode" (i.e. unset 0x40 bit)
uniwill_write_ec_ram(0x0751, mode_data & 0xbf);
return 0;
}
static long uniwill_ioctl_interface(struct file *file, unsigned int cmd, unsigned long arg) static long uniwill_ioctl_interface(struct file *file, unsigned int cmd, unsigned long arg)
{ {
u32 result = 0; u32 result = 0;
u32 copy_result; u32 copy_result;
u32 argument; u32 argument;
u8 byte_data;
const char str_no_if[] = "";
char *str_uniwill_if;
union uw_ec_read_return reg_read_return; union uw_ec_read_return reg_read_return;
union uw_ec_write_return reg_write_return; union uw_ec_write_return reg_write_return;
@ -169,47 +224,57 @@ static long uniwill_ioctl_interface(struct file *file, unsigned int cmd, unsigne
#endif #endif
switch (cmd) { switch (cmd) {
case R_UW_HW_IF_STR:
if (uniwill_get_active_interface_id(&str_uniwill_if) == 0) {
copy_result = copy_to_user((char *) arg, str_uniwill_if, strlen(str_uniwill_if) + 1);
} else {
copy_result = copy_to_user((char *) arg, str_no_if, strlen(str_no_if) + 1);
}
break;
case R_UW_FANSPEED: case R_UW_FANSPEED:
uw_ec_read_addr(0x04, 0x18, &reg_read_return); uniwill_read_ec_ram(0x1804, &byte_data);
result = reg_read_return.bytes.data_low; result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result)); copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break; break;
case R_UW_FANSPEED2: case R_UW_FANSPEED2:
uw_ec_read_addr(0x09, 0x18, &reg_read_return); uniwill_read_ec_ram(0x1809, &byte_data);
result = reg_read_return.bytes.data_low; result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result)); copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break; break;
case R_UW_FAN_TEMP: case R_UW_FAN_TEMP:
uw_ec_read_addr(0x3e, 0x04, &reg_read_return); uniwill_read_ec_ram(0x043e, &byte_data);
result = reg_read_return.bytes.data_low; result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result)); copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break; break;
case R_UW_FAN_TEMP2: case R_UW_FAN_TEMP2:
uw_ec_read_addr(0x4f, 0x04, &reg_read_return); uniwill_read_ec_ram(0x044f, &byte_data);
result = reg_read_return.bytes.data_low; result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result)); copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break; break;
case R_UW_MODE: case R_UW_MODE:
uw_ec_read_addr(0x51, 0x07, &reg_read_return); uniwill_read_ec_ram(0x0751, &byte_data);
result = reg_read_return.bytes.data_low; result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result)); copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break; break;
case R_UW_MODE_ENABLE: case R_UW_MODE_ENABLE:
uw_ec_read_addr(0x41, 0x07, &reg_read_return); uniwill_read_ec_ram(0x0741, &byte_data);
result = reg_read_return.bytes.data_low; result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result)); copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break; break;
#ifdef DEBUG #ifdef DEBUG
case R_TF_BC: case R_TF_BC:
copy_result = copy_from_user(&uw_arg, (void *) arg, sizeof(uw_arg)); copy_result = copy_from_user(&uw_arg, (void *) arg, sizeof(uw_arg));
reg_read_return.dword = 0;
result = uniwill_read_ec_ram((uw_arg[1] << 8) | uw_arg[0], &reg_read_return.bytes.data_low);
copy_result = copy_to_user((void *) arg, &reg_read_return.dword, sizeof(reg_read_return.dword));
// pr_info("R_TF_BC args [%0#2x, %0#2x, %0#2x, %0#2x]\n", uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3]); // pr_info("R_TF_BC args [%0#2x, %0#2x, %0#2x, %0#2x]\n", uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3]);
if (uniwill_ec_direct) { /*if (uniwill_ec_direct) {
result = uw_ec_read_addr_direct(uw_arg[0], uw_arg[1], &reg_read_return); result = uw_ec_read_addr_direct(uw_arg[0], uw_arg[1], &reg_read_return);
copy_result = copy_to_user((void *) arg, &reg_read_return.dword, sizeof(reg_read_return.dword)); copy_result = copy_to_user((void *) arg, &reg_read_return.dword, sizeof(reg_read_return.dword));
} else { } else {
result = uw_wmi_ec_evaluate(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], 1, uw_result); result = uw_wmi_ec_evaluate(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], 1, uw_result);
copy_result = copy_to_user((void *) arg, &uw_result, sizeof(uw_result)); copy_result = copy_to_user((void *) arg, &uw_result, sizeof(uw_result));
} }*/
break; break;
#endif #endif
} }
@ -227,29 +292,32 @@ static long uniwill_ioctl_interface(struct file *file, unsigned int cmd, unsigne
break; break;
case W_UW_MODE: case W_UW_MODE:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uw_ec_write_addr(0x51, 0x07, argument & 0xff, 0x00, &reg_write_return); uniwill_write_ec_ram(0x0751, argument & 0xff);
break; break;
case W_UW_MODE_ENABLE: case W_UW_MODE_ENABLE:
// Note: Is for the moment set and cleared on init/exit of module (uniwill mode) // Note: Is for the moment set and cleared on init/exit of module (uniwill mode)
/* /*
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uw_ec_write_addr(0x41, 0x07, argument & 0x01, 0x00, &reg_write_return); uniwill_write_ec_ram(0x0741, argument & 0x01);
*/ */
break; break;
case W_UW_FANAUTO: case W_UW_FANAUTO:
uw_set_fan_auto(); uw_set_fan_auto();
break; break;
#ifdef DEBUG #ifdef DEBUG
case W_TF_BC: case W_TF_BC:
reg_write_return.dword = 0;
copy_result = copy_from_user(&uw_arg, (void *) arg, sizeof(uw_arg)); copy_result = copy_from_user(&uw_arg, (void *) arg, sizeof(uw_arg));
if (uniwill_ec_direct) { uniwill_write_ec_ram((uw_arg[1] << 8) | uw_arg[0], uw_arg[2]);
copy_result = copy_to_user((void *) arg, &reg_write_return.dword, sizeof(reg_write_return.dword));
/*if (uniwill_ec_direct) {
result = uw_ec_write_addr_direct(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], &reg_write_return); result = uw_ec_write_addr_direct(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], &reg_write_return);
copy_result = copy_to_user((void *) arg, &reg_write_return.dword, sizeof(reg_write_return.dword)); copy_result = copy_to_user((void *) arg, &reg_write_return.dword, sizeof(reg_write_return.dword));
} else { } else {
result = uw_wmi_ec_evaluate(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], 0, uw_result); result = uw_wmi_ec_evaluate(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], 0, uw_result);
copy_result = copy_to_user((void *) arg, &uw_result, sizeof(uw_result)); copy_result = copy_to_user((void *) arg, &uw_result, sizeof(uw_result));
reg_write_return.dword = uw_result[0]; reg_write_return.dword = uw_result[0];
} }*/
/*pr_info("data_high %0#2x\n", reg_write_return.bytes.data_high); /*pr_info("data_high %0#2x\n", reg_write_return.bytes.data_high);
pr_info("data_low %0#2x\n", reg_write_return.bytes.data_low); pr_info("data_low %0#2x\n", reg_write_return.bytes.data_low);
pr_info("addr_high %0#2x\n", reg_write_return.bytes.addr_high); pr_info("addr_high %0#2x\n", reg_write_return.bytes.addr_high);
@ -293,8 +361,8 @@ static long fop_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
static struct file_operations fops_dev = { static struct file_operations fops_dev = {
.owner = THIS_MODULE, .owner = THIS_MODULE,
.unlocked_ioctl = fop_ioctl .unlocked_ioctl = fop_ioctl
// .open = fop_open, // .open = fop_open,
// .release = fop_release // .release = fop_release
}; };
struct class *tuxedo_io_device_class; struct class *tuxedo_io_device_class;
@ -308,11 +376,7 @@ static int __init tuxedo_io_init(void)
// Hardware identification // Hardware identification
id_check_clevo = clevo_identify(); id_check_clevo = clevo_identify();
id_check_uniwill = uniwill_identify() == 0 ? 1 : 0; id_check_uniwill = uniwill_identify();
if (id_check_uniwill == 1) {
uniwill_init();
}
#ifdef DEBUG #ifdef DEBUG
if (id_check_clevo == 0 && id_check_uniwill == 0) { if (id_check_clevo == 0 && id_check_uniwill == 0) {
@ -340,10 +404,6 @@ static int __init tuxedo_io_init(void)
static void __exit tuxedo_io_exit(void) static void __exit tuxedo_io_exit(void)
{ {
if (id_check_uniwill == 1) {
uniwill_exit();
}
device_destroy(tuxedo_io_device_class, tuxedo_io_device_handle); device_destroy(tuxedo_io_device_class, tuxedo_io_device_handle);
class_destroy(tuxedo_io_device_class); class_destroy(tuxedo_io_device_class);
cdev_del(&tuxedo_io_cdev); cdev_del(&tuxedo_io_cdev);

View file

@ -71,6 +71,7 @@
*/ */
// Read // Read
#define R_UW_HW_IF_STR _IOR(MAGIC_READ_UW, 0x00, char*)
#define R_UW_FANSPEED _IOR(MAGIC_READ_UW, 0x10, int32_t*) #define R_UW_FANSPEED _IOR(MAGIC_READ_UW, 0x10, int32_t*)
#define R_UW_FANSPEED2 _IOR(MAGIC_READ_UW, 0x11, int32_t*) #define R_UW_FANSPEED2 _IOR(MAGIC_READ_UW, 0x11, int32_t*)
#define R_UW_FAN_TEMP _IOR(MAGIC_READ_UW, 0x12, int32_t*) #define R_UW_FAN_TEMP _IOR(MAGIC_READ_UW, 0x12, int32_t*)

View file

@ -28,15 +28,9 @@ MODULE_DESCRIPTION("TUXEDO Computers keyboard & keyboard backlight Driver");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_VERSION("3.0.8"); MODULE_VERSION("3.0.8");
MODULE_ALIAS("wmi:" UNIWILL_WMI_EVENT_GUID_0);
MODULE_ALIAS("wmi:" UNIWILL_WMI_EVENT_GUID_1);
MODULE_ALIAS("wmi:" UNIWILL_WMI_EVENT_GUID_2);
static DEFINE_MUTEX(tuxedo_keyboard_init_driver_lock); static DEFINE_MUTEX(tuxedo_keyboard_init_driver_lock);
static struct tuxedo_keyboard_driver *driver_list[] = { // static struct tuxedo_keyboard_driver *driver_list[] = { };
&uniwill_keyboard_driver
};
static int tuxedo_input_init(const struct key_entry key_map[]) static int tuxedo_input_init(const struct key_entry key_map[])
{ {
@ -134,44 +128,48 @@ static void __exit tuxedo_input_exit(void)
} }
} }
static int __init tuxedo_keyboard_init(void) void tuxedo_keyboard_remove_driver(struct tuxedo_keyboard_driver *tk_driver)
{ {
int i; bool specified_driver_differ_from_used =
int num_drivers = sizeof(driver_list) / sizeof(*driver_list); tk_driver != NULL &&
TUXEDO_INFO("Model '%s' found\n", (
dmi_get_system_info(DMI_PRODUCT_NAME)); strcmp(
tk_driver->platform_driver->driver.name,
current_driver->platform_driver->driver.name
) != 0
);
// Attempt to load each available driver if (specified_driver_differ_from_used)
// Associated probe decides if it fits return;
// Driver from first successful probe is used
i = 0; TUXEDO_DEBUG("tuxedo_input_exit()\n");
while (IS_ERR_OR_NULL(tuxedo_platform_device) && i < num_drivers) { tuxedo_input_exit();
current_driver = driver_list[i]; TUXEDO_DEBUG("platform_device_unregister()\n");
tuxedo_keyboard_init_driver(current_driver); if (!IS_ERR_OR_NULL(tuxedo_platform_device)) {
++i; platform_device_unregister(tuxedo_platform_device);
tuxedo_platform_device = NULL;
} }
TUXEDO_DEBUG("platform_driver_unregister()\n");
if (IS_ERR_OR_NULL(tuxedo_platform_device)) { if (!IS_ERR_OR_NULL(current_driver)) {
TUXEDO_DEBUG("No matching hardware found on init\n"); platform_driver_unregister(current_driver->platform_driver);
current_driver = NULL; current_driver = NULL;
} }
}
EXPORT_SYMBOL(tuxedo_keyboard_remove_driver);
static int __init tuxedo_keyboard_init(void)
{
TUXEDO_INFO("module init\n");
return 0; return 0;
} }
static void __exit tuxedo_keyboard_exit(void) static void __exit tuxedo_keyboard_exit(void)
{ {
TUXEDO_DEBUG("tuxedo_input_exit()\n"); TUXEDO_INFO("module exit\n");
tuxedo_input_exit();
TUXEDO_DEBUG("platform_device_unregister()\n");
if (!IS_ERR_OR_NULL(tuxedo_platform_device))
platform_device_unregister(tuxedo_platform_device);
TUXEDO_DEBUG("platform_driver_unregister()\n");
if (!IS_ERR_OR_NULL(current_driver))
platform_driver_unregister(current_driver->platform_driver);
TUXEDO_DEBUG("exit\n"); if (tuxedo_platform_device != NULL)
tuxedo_keyboard_remove_driver(NULL);
} }
module_init(tuxedo_keyboard_init); module_init(tuxedo_keyboard_init);

View file

@ -56,6 +56,7 @@ static struct input_dev *tuxedo_input_device = NULL;
static struct tuxedo_keyboard_driver *current_driver = NULL; static struct tuxedo_keyboard_driver *current_driver = NULL;
struct platform_device *tuxedo_keyboard_init_driver(struct tuxedo_keyboard_driver *tk_driver); struct platform_device *tuxedo_keyboard_init_driver(struct tuxedo_keyboard_driver *tk_driver);
void tuxedo_keyboard_remove_driver(struct tuxedo_keyboard_driver *tk_driver);
/** /**
* Basically a copy of the existing report event but doesn't report unknown events * Basically a copy of the existing report event but doesn't report unknown events

73
src/uniwill_interfaces.h Normal file
View file

@ -0,0 +1,73 @@
/*!
* Copyright (c) 2021 TUXEDO Computers GmbH <tux@tuxedocomputers.com>
*
* This file is part of tuxedo-keyboard.
*
* tuxedo-keyboard is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef UNIWILL_INTERFACES_H
#define UNIWILL_INTERFACES_H
#include <linux/types.h>
#define UNIWILL_WMI_MGMT_GUID_BA "ABBC0F6D-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_MGMT_GUID_BB "ABBC0F6E-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_MGMT_GUID_BC "ABBC0F6F-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_EVENT_GUID_0 "ABBC0F70-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_EVENT_GUID_1 "ABBC0F71-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_EVENT_GUID_2 "ABBC0F72-8EA1-11D1-00A0-C90629100000"
#define MODULE_ALIAS_UNIWILL_WMI() \
MODULE_ALIAS("wmi:" UNIWILL_WMI_EVENT_GUID_2); \
MODULE_ALIAS("wmi:" UNIWILL_WMI_MGMT_GUID_BC);
#define UNIWILL_INTERFACE_WMI_STRID "uniwill_wmi"
typedef u32 (uniwill_read_ec_ram_t)(u16, u8*);
typedef u32 (uniwill_write_ec_ram_t)(u16, u8);
typedef void (uniwill_event_callb_t)(u32);
struct uniwill_interface_t {
char *string_id;
uniwill_event_callb_t *event_callb;
uniwill_read_ec_ram_t *read_ec_ram;
uniwill_write_ec_ram_t *write_ec_ram;
};
u32 uniwill_add_interface(struct uniwill_interface_t *new_interface);
u32 uniwill_remove_interface(struct uniwill_interface_t *interface);
uniwill_read_ec_ram_t uniwill_read_ec_ram;
uniwill_write_ec_ram_t uniwill_write_ec_ram;
u32 uniwill_get_active_interface_id(char **id_str);
union uw_ec_read_return {
u32 dword;
struct {
u8 data_low;
u8 data_high;
} bytes;
};
union uw_ec_write_return {
u32 dword;
struct {
u8 addr_low;
u8 addr_high;
u8 data_low;
u8 data_high;
} bytes;
};
#endif

View file

@ -1,5 +1,5 @@
/*! /*!
* Copyright (c) 2020 TUXEDO Computers GmbH <tux@tuxedocomputers.com> * Copyright (c) 2020-2021 TUXEDO Computers GmbH <tux@tuxedocomputers.com>
* *
* This file is part of tuxedo-keyboard. * This file is part of tuxedo-keyboard.
* *
@ -26,7 +26,7 @@
#include <linux/leds.h> #include <linux/leds.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/version.h> #include <linux/version.h>
#include "uw_io.h" #include "uniwill_interfaces.h"
#define UNIWILL_WMI_MGMT_GUID_BA "ABBC0F6D-8EA1-11D1-00A0-C90629100000" #define UNIWILL_WMI_MGMT_GUID_BA "ABBC0F6D-8EA1-11D1-00A0-C90629100000"
#define UNIWILL_WMI_MGMT_GUID_BB "ABBC0F6E-8EA1-11D1-00A0-C90629100000" #define UNIWILL_WMI_MGMT_GUID_BB "ABBC0F6E-8EA1-11D1-00A0-C90629100000"
@ -88,6 +88,98 @@ static struct key_entry uniwill_wmi_keymap[] = {
{ KE_END, 0 } { KE_END, 0 }
}; };
static struct uniwill_interfaces_t {
struct uniwill_interface_t *wmi;
} uniwill_interfaces = { .wmi = NULL };
uniwill_event_callb_t uniwill_event_callb;
u32 uniwill_read_ec_ram(u16 address, u8 *data)
{
u32 status;
if (!IS_ERR_OR_NULL(uniwill_interfaces.wmi))
status = uniwill_interfaces.wmi->read_ec_ram(address, data);
else {
pr_err("no active interface while read addr 0x%04x\n", address);
status = -EIO;
}
return status;
}
EXPORT_SYMBOL(uniwill_read_ec_ram);
u32 uniwill_write_ec_ram(u16 address, u8 data)
{
u32 status;
if (!IS_ERR_OR_NULL(uniwill_interfaces.wmi))
status = uniwill_interfaces.wmi->write_ec_ram(address, data);
else {
pr_err("no active interface while write addr 0x%04x data 0x%02x\n", address, data);
status = -EIO;
}
return status;
}
EXPORT_SYMBOL(uniwill_write_ec_ram);
static DEFINE_MUTEX(uniwill_interface_modification_lock);
u32 uniwill_add_interface(struct uniwill_interface_t *interface)
{
mutex_lock(&uniwill_interface_modification_lock);
if (strcmp(interface->string_id, UNIWILL_INTERFACE_WMI_STRID) == 0)
uniwill_interfaces.wmi = interface;
else {
TUXEDO_DEBUG("trying to add unknown interface\n");
mutex_unlock(&uniwill_interface_modification_lock);
return -EINVAL;
}
interface->event_callb = uniwill_event_callb;
mutex_unlock(&uniwill_interface_modification_lock);
// Initialize driver if not already present
tuxedo_keyboard_init_driver(&uniwill_keyboard_driver);
return 0;
}
EXPORT_SYMBOL(uniwill_add_interface);
u32 uniwill_remove_interface(struct uniwill_interface_t *interface)
{
mutex_lock(&uniwill_interface_modification_lock);
if (strcmp(interface->string_id, UNIWILL_INTERFACE_WMI_STRID) == 0) {
// Remove driver if last interface is removed
tuxedo_keyboard_remove_driver(&uniwill_keyboard_driver);
uniwill_interfaces.wmi = NULL;
} else {
mutex_unlock(&uniwill_interface_modification_lock);
return -EINVAL;
}
mutex_unlock(&uniwill_interface_modification_lock);
return 0;
}
EXPORT_SYMBOL(uniwill_remove_interface);
u32 uniwill_get_active_interface_id(char **id_str)
{
if (IS_ERR_OR_NULL(uniwill_interfaces.wmi))
return -ENODEV;
if (!IS_ERR_OR_NULL(id_str))
*id_str = uniwill_interfaces.wmi->string_id;
return 0;
}
EXPORT_SYMBOL(uniwill_get_active_interface_id);
static void key_event_work(struct work_struct *work) static void key_event_work(struct work_struct *work)
{ {
sparse_keymap_report_known_event( sparse_keymap_report_known_event(
@ -130,16 +222,16 @@ static int keyboard_notifier_callb(struct notifier_block *nb, unsigned long code
} }
static struct notifier_block keyboard_notifier_block = { static struct notifier_block keyboard_notifier_block = {
.notifier_call = keyboard_notifier_callb .notifier_call = keyboard_notifier_callb
}; };
static u8 uniwill_read_kbd_bl_enabled(void) static u8 uniwill_read_kbd_bl_enabled(void)
{ {
union uw_ec_read_return reg_read_return; u8 backlight_data;
u8 enabled = 0xff; u8 enabled = 0xff;
__uw_ec_read_addr(0x8c, 0x07, &reg_read_return); uniwill_read_ec_ram(0x078c, &backlight_data);
enabled = (reg_read_return.bytes.data_low >> 1) & 0x01; enabled = (backlight_data >> 1) & 0x01;
enabled = !enabled; enabled = !enabled;
return enabled; return enabled;
@ -147,24 +239,22 @@ static u8 uniwill_read_kbd_bl_enabled(void)
static void uniwill_write_kbd_bl_enable(u8 enable) static void uniwill_write_kbd_bl_enable(u8 enable)
{ {
union uw_ec_read_return reg_read_return; u8 backlight_data;
union uw_ec_write_return reg_write_return;
u8 write_value = 0;
enable = enable & 0x01; enable = enable & 0x01;
__uw_ec_read_addr(0x8c, 0x07, &reg_read_return); uniwill_read_ec_ram(0x078c, &backlight_data);
write_value = reg_read_return.bytes.data_low & ~(1 << 1); backlight_data = backlight_data & ~(1 << 1);
write_value |= (!enable << 1); backlight_data |= (!enable << 1);
__uw_ec_write_addr(0x8c, 0x07, write_value, 0x00, &reg_write_return); uniwill_write_ec_ram(0x078c, backlight_data);
} }
/*static u32 uniwill_read_kbd_bl_br_state(u8 *brightness_state) /*static u32 uniwill_read_kbd_bl_br_state(u8 *brightness_state)
{ {
union uw_ec_read_return reg_read_return; u8 backlight_data;
u32 result; u32 result;
__uw_ec_read_addr(0x8c, 0x07, &reg_read_return); uniwill_read_ec_ram(0x078c, &backlight_data);
*brightness_state = (reg_read_return.bytes.data_low & 0xf0) >> 4; *brightness_state = (backlight_data & 0xf0) >> 4;
result = 0; result = 0;
return result; return result;
@ -172,15 +262,12 @@ static void uniwill_write_kbd_bl_enable(u8 enable)
static u32 uniwill_read_kbd_bl_rgb(u8 *red, u8 *green, u8 *blue) static u32 uniwill_read_kbd_bl_rgb(u8 *red, u8 *green, u8 *blue)
{ {
union uw_ec_read_return reg_read_return;
u32 result; u32 result;
__uw_ec_read_addr(0x03, 0x18, &reg_read_return); uniwill_read_ec_ram(0x1803, red);
*red = reg_read_return.bytes.data_low; uniwill_read_ec_ram(0x1805, green);
__uw_ec_read_addr(0x05, 0x18, &reg_read_return); uniwill_read_ec_ram(0x1808, blue);
*green = reg_read_return.bytes.data_low;
__uw_ec_read_addr(0x08, 0x18, &reg_read_return);
*blue = reg_read_return.bytes.data_low;
result = 0; result = 0;
return result; return result;
@ -188,16 +275,13 @@ static u32 uniwill_read_kbd_bl_rgb(u8 *red, u8 *green, u8 *blue)
static void uniwill_write_kbd_bl_rgb(u8 red, u8 green, u8 blue) static void uniwill_write_kbd_bl_rgb(u8 red, u8 green, u8 blue)
{ {
union uw_ec_write_return reg_write_return;
// Write the colors
if (red > 0xc8) red = 0xc8; if (red > 0xc8) red = 0xc8;
if (green > 0xc8) green = 0xc8; if (green > 0xc8) green = 0xc8;
if (blue > 0xc8) blue = 0xc8; if (blue > 0xc8) blue = 0xc8;
__uw_ec_write_addr(0x03, 0x18, red, 0x00, &reg_write_return); uniwill_write_ec_ram(0x1803, red);
__uw_ec_write_addr(0x05, 0x18, green, 0x00, &reg_write_return); uniwill_write_ec_ram(0x1805, green);
__uw_ec_write_addr(0x08, 0x18, blue, 0x00, &reg_write_return); uniwill_write_ec_ram(0x1808, blue);
TUXEDO_DEBUG("Wrote color [%0#4x, %0#4x, %0#4x]\n", red, green, blue); TUXEDO_DEBUG("Wrote kbd color [%0#4x, %0#4x, %0#4x]\n", red, green, blue);
} }
static void uniwill_write_kbd_bl_state(void) { static void uniwill_write_kbd_bl_state(void) {
@ -223,95 +307,57 @@ static void uniwill_write_kbd_bl_state(void) {
static void uniwill_write_kbd_bl_reset(void) static void uniwill_write_kbd_bl_reset(void)
{ {
union uw_ec_write_return reg_write_return; uniwill_write_ec_ram(0x078c, 0x10);
__uw_ec_write_addr(0x8c, 0x07, 0x10, 0x00, &reg_write_return);
} }
static void uniwill_wmi_handle_event(u32 value, void *context, u32 guid_nr) void uniwill_event_callb(u32 code)
{ {
struct acpi_buffer response = { ACPI_ALLOCATE_BUFFER, NULL }; if (uniwill_keyboard_driver.input_device != NULL)
union acpi_object *obj; if (!sparse_keymap_report_known_event(uniwill_keyboard_driver.input_device, code, 1, true)) {
TUXEDO_DEBUG("Unknown code - %d (%0#6x)\n", code, code);
}
acpi_status status; // Special key combination when mode change key is pressed
int code; if (code == 0xb0) {
input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTMETA, 1);
status = wmi_get_event_data(value, &response); input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTALT, 1);
if (status != AE_OK) { input_report_key(uniwill_keyboard_driver.input_device, KEY_F6, 1);
TUXEDO_ERROR("uniwill handle event -> bad event status\n"); input_sync(uniwill_keyboard_driver.input_device);
return; input_report_key(uniwill_keyboard_driver.input_device, KEY_F6, 0);
input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTALT, 0);
input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTMETA, 0);
input_sync(uniwill_keyboard_driver.input_device);
} }
obj = (union acpi_object *) response.pointer; // Keyboard backlight brightness toggle
if (obj) { if (uniwill_kbd_bl_type_rgb_single_color) {
if (obj->type == ACPI_TYPE_INTEGER) { switch (code) {
code = obj->integer.value; case UNIWILL_OSD_KB_LED_LEVEL0:
if (!sparse_keymap_report_known_event(uniwill_keyboard_driver.input_device, code, 1, true)) { kbd_led_state_uw.brightness = 0x00;
TUXEDO_DEBUG("[Ev %d] Unknown key - %d (%0#6x)\n", guid_nr, code, code); uniwill_write_kbd_bl_state();
} break;
case UNIWILL_OSD_KB_LED_LEVEL1:
// Special key combination when mode change key is pressed kbd_led_state_uw.brightness = 0x20;
if (code == 0xb0) { uniwill_write_kbd_bl_state();
input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTMETA, 1); break;
input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTALT, 1); case UNIWILL_OSD_KB_LED_LEVEL2:
input_report_key(uniwill_keyboard_driver.input_device, KEY_F6, 1); kbd_led_state_uw.brightness = 0x50;
input_sync(uniwill_keyboard_driver.input_device); uniwill_write_kbd_bl_state();
input_report_key(uniwill_keyboard_driver.input_device, KEY_F6, 0); break;
input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTALT, 0); case UNIWILL_OSD_KB_LED_LEVEL3:
input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTMETA, 0); kbd_led_state_uw.brightness = 0x80;
input_sync(uniwill_keyboard_driver.input_device); uniwill_write_kbd_bl_state();
} break;
case UNIWILL_OSD_KB_LED_LEVEL4:
// Keyboard backlight brightness toggle kbd_led_state_uw.brightness = 0xc8;
if (uniwill_kbd_bl_type_rgb_single_color) { uniwill_write_kbd_bl_state();
switch (code) { break;
case UNIWILL_OSD_KB_LED_LEVEL0: // Also refresh keyboard state on cable switch event
kbd_led_state_uw.brightness = 0x00; case UNIWILL_OSD_DC_ADAPTER_CHANGE:
uniwill_write_kbd_bl_state(); uniwill_write_kbd_bl_state();
break; break;
case UNIWILL_OSD_KB_LED_LEVEL1:
kbd_led_state_uw.brightness = 0x20;
uniwill_write_kbd_bl_state();
break;
case UNIWILL_OSD_KB_LED_LEVEL2:
kbd_led_state_uw.brightness = 0x50;
uniwill_write_kbd_bl_state();
break;
case UNIWILL_OSD_KB_LED_LEVEL3:
kbd_led_state_uw.brightness = 0x80;
uniwill_write_kbd_bl_state();
break;
case UNIWILL_OSD_KB_LED_LEVEL4:
kbd_led_state_uw.brightness = 0xc8;
uniwill_write_kbd_bl_state();
break;
// Also refresh keyboard state on cable switch event
case UNIWILL_OSD_DC_ADAPTER_CHANGE:
uniwill_write_kbd_bl_state();
break;
}
}
} else {
TUXEDO_DEBUG("[Ev %d] Unknown event type - %d (%0#6x)\n", guid_nr, obj->type, obj->type);
} }
} }
kfree(obj);
}
static void uniwill_wmi_notify0(u32 value, void *context)
{
uniwill_wmi_handle_event(value, context, 0);
}
static void uniwill_wmi_notify1(u32 value, void *context)
{
uniwill_wmi_handle_event(value, context, 1);
}
static void uniwill_wmi_notify2(u32 value, void *context)
{
uniwill_wmi_handle_event(value, context, 2);
} }
static ssize_t uw_brightness_show(struct device *child, static ssize_t uw_brightness_show(struct device *child,
@ -518,107 +564,42 @@ static int uw_kbd_bl_init(struct platform_device *dev)
static void uniwill_write_lightbar_rgb(u8 red, u8 green, u8 blue) static void uniwill_write_lightbar_rgb(u8 red, u8 green, u8 blue)
{ {
union uw_ec_write_return reg_write_return; if (red <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) {
uniwill_write_ec_ram(0x0749, red);
uw_ec_write_func *__uw_ec_write_addr; }
if (green <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) {
__uw_ec_write_addr = symbol_get(uw_ec_write_addr); uniwill_write_ec_ram(0x074a, green);
}
if (__uw_ec_write_addr) { if (blue <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) {
if (red <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) { uniwill_write_ec_ram(0x074b, blue);
__uw_ec_write_addr(0x49, 0x07, red, 0x00, &reg_write_return);
}
if (green <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) {
__uw_ec_write_addr(0x4a, 0x07, green, 0x00, &reg_write_return);
}
if (blue <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) {
__uw_ec_write_addr(0x4b, 0x07, blue, 0x00, &reg_write_return);
}
} else {
TUXEDO_DEBUG("tuxedo-cc-wmi symbols not found\n");
} }
if (__uw_ec_write_addr) symbol_put(uw_ec_write_addr);
} }
static int uniwill_read_lightbar_rgb(u8 *red, u8 *green, u8 *blue) static void uniwill_read_lightbar_rgb(u8 *red, u8 *green, u8 *blue)
{ {
int status; uniwill_read_ec_ram(0x0749, red);
union uw_ec_read_return reg_read_return; uniwill_read_ec_ram(0x074a, green);
uniwill_read_ec_ram(0x074b, blue);
uw_ec_read_func *__uw_ec_read_addr;
__uw_ec_read_addr = symbol_get(uw_ec_read_addr);
if (__uw_ec_read_addr) {
__uw_ec_read_addr(0x49, 0x07, &reg_read_return);
*red = reg_read_return.bytes.data_low;
__uw_ec_read_addr(0x4a, 0x07, &reg_read_return);
*green = reg_read_return.bytes.data_low;
__uw_ec_read_addr(0x4b, 0x07, &reg_read_return);
*blue = reg_read_return.bytes.data_low;
status = 0;
} else {
status = -EIO;
TUXEDO_DEBUG("tuxedo-cc-wmi symbols not found\n");
}
if (__uw_ec_read_addr) symbol_put(uw_ec_read_addr);
return status;
} }
static void uniwill_write_lightbar_animation(bool animation_status) static void uniwill_write_lightbar_animation(bool animation_status)
{ {
union uw_ec_write_return reg_write_return;
union uw_ec_read_return reg_read_return;
u8 value; u8 value;
uw_ec_write_func *__uw_ec_write_addr; uniwill_read_ec_ram(0x0748, &value);
uw_ec_read_func *__uw_ec_read_addr; if (animation_status) {
value |= 0x80;
__uw_ec_write_addr = symbol_get(uw_ec_write_addr);
__uw_ec_read_addr = symbol_get(uw_ec_read_addr);
if (__uw_ec_write_addr && __uw_ec_read_addr) {
__uw_ec_read_addr(0x48, 0x07, &reg_read_return);
value = reg_read_return.bytes.data_low;
if (animation_status) {
value |= 0x80;
} else {
value &= ~0x80;
}
__uw_ec_write_addr(0x48, 0x07, value, 0x00, &reg_write_return);
} else { } else {
TUXEDO_DEBUG("tuxedo-cc-wmi symbols not found\n"); value &= ~0x80;
} }
uniwill_write_ec_ram(0x0748, value);
if (__uw_ec_write_addr) symbol_put(uw_ec_write_addr);
if (__uw_ec_read_addr) symbol_put(uw_ec_read_addr);
} }
static int uniwill_read_lightbar_animation(bool *animation_status) static void uniwill_read_lightbar_animation(bool *animation_status)
{ {
int status; u8 lightbar_animation_data;
union uw_ec_read_return reg_read_return; uniwill_read_ec_ram(0x0748, &lightbar_animation_data);
*animation_status = (lightbar_animation_data & 0x80) > 0;
uw_ec_read_func *__uw_ec_read_addr;
__uw_ec_read_addr = symbol_get(uw_ec_read_addr);
if (__uw_ec_read_addr) {
__uw_ec_read_addr(0x48, 0x07, &reg_read_return);
*animation_status = (reg_read_return.bytes.data_low & 0x80) > 0;
status = 0;
} else {
status = -EIO;
TUXEDO_DEBUG("tuxedo-cc-wmi symbols not found\n");
}
if (__uw_ec_read_addr) symbol_put(uw_ec_read_addr);
return status;
} }
static int lightbar_set_blocking(struct led_classdev *led_cdev, enum led_brightness brightness) static int lightbar_set_blocking(struct led_classdev *led_cdev, enum led_brightness brightness)
@ -716,7 +697,7 @@ static int uw_lightbar_init(struct platform_device *dev)
|| dmi_match(DMI_PRODUCT_NAME, "A60 MUV") || dmi_match(DMI_PRODUCT_NAME, "A60 MUV")
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 18, 0) #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 18, 0)
|| dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI03")
|| dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XA03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XA03")
#endif #endif
; ;
@ -752,40 +733,27 @@ static int uw_lightbar_remove(struct platform_device *dev)
static int uniwill_keyboard_probe(struct platform_device *dev) static int uniwill_keyboard_probe(struct platform_device *dev)
{ {
u32 i;
u8 data;
int status; int status;
// Look for for GUIDs used on uniwill devices // FIXME Hard set balanced profile until we have implemented a way to
status = // switch it while tuxedo_io is loaded
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_0) && // uw_ec_write_addr(0x51, 0x07, 0x00, 0x00, &reg_write_return);
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_1) && uniwill_write_ec_ram(0x0751, 0x00);
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_2) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BA) && // Set manual-mode fan-curve in 0x0743 - 0x0747
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BB) && // Some kind of default fan-curve is stored in 0x0786 - 0x078a: Using it to initialize manual-mode fan-curve
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BC); for (i = 0; i < 5; ++i) {
uniwill_read_ec_ram(0x0786 + i, &data);
if (!status) { uniwill_write_ec_ram(0x0743 + i, data);
TUXEDO_DEBUG("probe: At least one Uniwill GUID missing\n");
return -ENODEV;
} }
// Attempt to add event handlers // Enable manual mode
status = wmi_install_notify_handler(UNIWILL_WMI_EVENT_GUID_0, uniwill_wmi_notify0, NULL); uniwill_write_ec_ram(0x0741, 0x01);
if (ACPI_FAILURE(status)) {
TUXEDO_ERROR("probe: Failed to install uniwill notify handler 0\n");
goto err_remove_notifiers;
}
status = wmi_install_notify_handler(UNIWILL_WMI_EVENT_GUID_1, uniwill_wmi_notify1, NULL);
if (ACPI_FAILURE(status)) {
TUXEDO_ERROR("probe: Failed to install uniwill notify handler 1\n");
goto err_remove_notifiers;
}
status = wmi_install_notify_handler(UNIWILL_WMI_EVENT_GUID_2, uniwill_wmi_notify2, NULL); // Zero second fan temp for detection
if (ACPI_FAILURE(status)) { uniwill_write_ec_ram(0x044f, 0x00);
TUXEDO_ERROR("probe: Failed to install uniwill notify handler 2\n");
goto err_remove_notifiers;
}
status = register_keyboard_notifier(&keyboard_notifier_block); status = register_keyboard_notifier(&keyboard_notifier_block);
@ -795,13 +763,6 @@ static int uniwill_keyboard_probe(struct platform_device *dev)
uw_lightbar_loaded = (status >= 0); uw_lightbar_loaded = (status >= 0);
return 0; return 0;
err_remove_notifiers:
wmi_remove_notify_handler(UNIWILL_WMI_EVENT_GUID_0);
wmi_remove_notify_handler(UNIWILL_WMI_EVENT_GUID_1);
wmi_remove_notify_handler(UNIWILL_WMI_EVENT_GUID_2);
return -ENODEV;
} }
static int uniwill_keyboard_remove(struct platform_device *dev) static int uniwill_keyboard_remove(struct platform_device *dev)
@ -817,15 +778,15 @@ static int uniwill_keyboard_remove(struct platform_device *dev)
} }
unregister_keyboard_notifier(&keyboard_notifier_block); unregister_keyboard_notifier(&keyboard_notifier_block);
wmi_remove_notify_handler(UNIWILL_WMI_EVENT_GUID_0);
wmi_remove_notify_handler(UNIWILL_WMI_EVENT_GUID_1);
wmi_remove_notify_handler(UNIWILL_WMI_EVENT_GUID_2);
del_timer(&uw_kbd_bl_init_timer); del_timer(&uw_kbd_bl_init_timer);
if (uw_lightbar_loaded) if (uw_lightbar_loaded)
uw_lightbar_remove(dev); uw_lightbar_remove(dev);
// Disable manual mode
uniwill_write_ec_ram(0x0741, 0x00);
return 0; return 0;
} }

354
src/uniwill_wmi.c Normal file
View file

@ -0,0 +1,354 @@
/*!
* Copyright (c) 2021 TUXEDO Computers GmbH <tux@tuxedocomputers.com>
*
* This file is part of tuxedo-keyboard.
*
* tuxedo-keyboard is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see <https://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/wmi.h>
#include <linux/version.h>
#include <linux/delay.h>
#include "uniwill_interfaces.h"
#define UNIWILL_EC_REG_LDAT 0x8a
#define UNIWILL_EC_REG_HDAT 0x8b
#define UNIWILL_EC_REG_FLAGS 0x8c
#define UNIWILL_EC_REG_CMDL 0x8d
#define UNIWILL_EC_REG_CMDH 0x8e
#define UNIWILL_EC_BIT_RFLG 0
#define UNIWILL_EC_BIT_WFLG 1
#define UNIWILL_EC_BIT_BFLG 2
#define UNIWILL_EC_BIT_CFLG 3
#define UNIWILL_EC_BIT_DRDY 7
#define UW_EC_WAIT_CYCLES 0x50
static bool uniwill_ec_direct = true;
DEFINE_MUTEX(uniwill_ec_lock);
static u32 uw_wmi_ec_evaluate(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, u8 read_flag, u32 *return_buffer)
{
acpi_status status;
union acpi_object *out_acpi;
u32 e_result = 0;
// Kernel buffer for input argument
u32 *wmi_arg = (u32 *) kmalloc(sizeof(u32)*10, GFP_KERNEL);
// Byte reference to the input buffer
u8 *wmi_arg_bytes = (u8 *) wmi_arg;
u8 wmi_instance = 0x00;
u32 wmi_method_id = 0x04;
struct acpi_buffer wmi_in = { (acpi_size) sizeof(wmi_arg), wmi_arg};
struct acpi_buffer wmi_out = { ACPI_ALLOCATE_BUFFER, NULL };
mutex_lock(&uniwill_ec_lock);
// Zero input buffer
memset(wmi_arg, 0x00, 10 * sizeof(u32));
// Configure the input buffer
wmi_arg_bytes[0] = addr_low;
wmi_arg_bytes[1] = addr_high;
wmi_arg_bytes[2] = data_low;
wmi_arg_bytes[3] = data_high;
if (read_flag != 0) {
wmi_arg_bytes[5] = 0x01;
}
status = wmi_evaluate_method(UNIWILL_WMI_MGMT_GUID_BC, wmi_instance, wmi_method_id, &wmi_in, &wmi_out);
out_acpi = (union acpi_object *) wmi_out.pointer;
if (out_acpi && out_acpi->type == ACPI_TYPE_BUFFER) {
memcpy(return_buffer, out_acpi->buffer.pointer, out_acpi->buffer.length);
} /* else if (out_acpi && out_acpi->type == ACPI_TYPE_INTEGER) {
e_result = (u32) out_acpi->integer.value;
}*/
if (ACPI_FAILURE(status)) {
pr_err("uniwill_wmi.h: Error evaluating method\n");
e_result = -EIO;
}
kfree(out_acpi);
kfree(wmi_arg);
mutex_unlock(&uniwill_ec_lock);
return e_result;
}
/**
* EC address read through WMI
*/
static u32 uw_ec_read_addr_wmi(u8 addr_low, u8 addr_high, union uw_ec_read_return *output)
{
u32 uw_data[10];
u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, 0x00, 0x00, 1, uw_data);
output->dword = uw_data[0];
// pr_debug("addr: 0x%02x%02x value: %0#4x (high: %0#4x) result: %d\n", addr_high, addr_low, output->bytes.data_low, output->bytes.data_high, ret);
return ret;
}
/**
* EC address write through WMI
*/
static u32 uw_ec_write_addr_wmi(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output)
{
u32 uw_data[10];
u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, data_low, data_high, 0, uw_data);
output->dword = uw_data[0];
return ret;
}
/**
* Direct EC address read
*/
static u32 uw_ec_read_addr_direct(u8 addr_low, u8 addr_high, union uw_ec_read_return *output)
{
u32 result;
u8 tmp, count, flags;
mutex_lock(&uniwill_ec_lock);
ec_write(UNIWILL_EC_REG_LDAT, addr_low);
ec_write(UNIWILL_EC_REG_HDAT, addr_high);
flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_RFLG);
ec_write(UNIWILL_EC_REG_FLAGS, flags);
// Wait for ready flag
count = UW_EC_WAIT_CYCLES;
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) {
msleep(1);
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
count -= 1;
}
if (count != 0) {
output->dword = 0;
ec_read(UNIWILL_EC_REG_CMDL, &tmp);
output->bytes.data_low = tmp;
ec_read(UNIWILL_EC_REG_CMDH, &tmp);
output->bytes.data_high = tmp;
result = 0;
} else {
output->dword = 0xfefefefe;
result = -EIO;
}
ec_write(UNIWILL_EC_REG_FLAGS, 0x00);
mutex_unlock(&uniwill_ec_lock);
// pr_debug("addr: 0x%02x%02x value: %0#4x result: %d\n", addr_high, addr_low, output->bytes.data_low, result);
return result;
}
static u32 uw_ec_write_addr_direct(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output)
{
u32 result = 0;
u8 tmp, count, flags;
mutex_lock(&uniwill_ec_lock);
ec_write(UNIWILL_EC_REG_LDAT, addr_low);
ec_write(UNIWILL_EC_REG_HDAT, addr_high);
ec_write(UNIWILL_EC_REG_CMDL, data_low);
ec_write(UNIWILL_EC_REG_CMDH, data_high);
flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_WFLG);
ec_write(UNIWILL_EC_REG_FLAGS, flags);
// Wait for ready flag
count = UW_EC_WAIT_CYCLES;
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) {
msleep(1);
ec_read(UNIWILL_EC_REG_FLAGS, &tmp);
count -= 1;
}
// Replicate wmi output depending on success
if (count != 0) {
output->bytes.addr_low = addr_low;
output->bytes.addr_high = addr_high;
output->bytes.data_low = data_low;
output->bytes.data_high = data_high;
result = 0;
} else {
output->dword = 0xfefefefe;
result = -EIO;
}
ec_write(UNIWILL_EC_REG_FLAGS, 0x00);
mutex_unlock(&uniwill_ec_lock);
return result;
}
u32 uw_wmi_read_ec_ram(u16 addr, u8 *data)
{
u32 result;
u8 addr_low, addr_high;
union uw_ec_read_return output;
if (IS_ERR_OR_NULL(data))
return -EINVAL;
addr_low = addr & 0xff;
addr_high = (addr >> 8) & 0xff;
if (uniwill_ec_direct) {
result = uw_ec_read_addr_direct(addr_low, addr_high, &output);
} else {
result = uw_ec_read_addr_wmi(addr_low, addr_high, &output);
}
*data = output.bytes.data_low;
return result;
}
u32 uw_wmi_write_ec_ram(u16 addr, u8 data)
{
u32 result;
u8 addr_low, addr_high, data_low, data_high;
union uw_ec_write_return output;
addr_low = addr & 0xff;
addr_high = (addr >> 8) & 0xff;
data_low = data;
data_high = 0x00;
if (uniwill_ec_direct)
result = uw_ec_write_addr_direct(addr_low, addr_high, data_low, data_high, &output);
else
result = uw_ec_write_addr_wmi(addr_low, addr_high, data_low, data_high, &output);
return result;
}
struct uniwill_interface_t uniwill_wmi_interface = {
.string_id = UNIWILL_INTERFACE_WMI_STRID,
.read_ec_ram = uw_wmi_read_ec_ram,
.write_ec_ram = uw_wmi_write_ec_ram
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 3, 0)
static int uniwill_wmi_probe(struct wmi_device *wdev)
#else
static int uniwill_wmi_probe(struct wmi_device *wdev, const void *dummy_context)
#endif
{
int status;
// Look for for GUIDs used on uniwill devices
status =
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_0) &&
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_1) &&
wmi_has_guid(UNIWILL_WMI_EVENT_GUID_2) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BA) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BB) &&
wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BC);
if (!status) {
pr_debug("probe: At least one Uniwill GUID missing\n");
return -ENODEV;
}
uniwill_add_interface(&uniwill_wmi_interface);
pr_info("interface initialized\n");
return 0;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0)
static int uniwill_wmi_remove(struct wmi_device *wdev)
#else
static void uniwill_wmi_remove(struct wmi_device *wdev)
#endif
{
pr_debug("uniwill_wmi driver remove\n");
uniwill_remove_interface(&uniwill_wmi_interface);
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0)
return 0;
#endif
}
static void uniwill_wmi_notify(struct wmi_device *wdev, union acpi_object *obj)
{
u32 code;
if (!IS_ERR_OR_NULL(uniwill_wmi_interface.event_callb)) {
if (obj) {
if (obj->type == ACPI_TYPE_INTEGER) {
code = obj->integer.value;
// Execute registered callback
uniwill_wmi_interface.event_callb(code);
} else {
pr_debug("unknown event type - %d (%0#6x)\n", obj->type, obj->type);
}
} else {
pr_debug("expected ACPI object doesn't exist\n");
}
} else {
pr_debug("no registered callback\n");
}
}
static const struct wmi_device_id uniwill_wmi_device_ids[] = {
// Listing one should be enough, for a driver that "takes care of all anyways"
// also prevents probe (and handling) per "device"
{ .guid_string = UNIWILL_WMI_EVENT_GUID_2 },
{ }
};
static struct wmi_driver uniwill_wmi_driver = {
.driver = {
.name = UNIWILL_INTERFACE_WMI_STRID,
.owner = THIS_MODULE
},
.id_table = uniwill_wmi_device_ids,
.probe = uniwill_wmi_probe,
.remove = uniwill_wmi_remove,
.notify = uniwill_wmi_notify,
};
module_wmi_driver(uniwill_wmi_driver);
MODULE_AUTHOR("TUXEDO Computers GmbH <tux@tuxedocomputers.com>");
MODULE_DESCRIPTION("Driver for Uniwill WMI interface");
MODULE_VERSION("0.0.1");
MODULE_LICENSE("GPL");
/*
* If set to true, the module will use the replicated WMI functions
* (direct ec_read/ec_write) to read and write to the EC RAM instead
* of the original. Since the original functions, in all observed cases,
* use excessive delays, they are not preferred.
*/
module_param_cb(ec_direct_io, &param_ops_bool, &uniwill_ec_direct, S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH);
MODULE_PARM_DESC(ec_direct_io, "Do not use WMI methods to read/write EC RAM (default: true).");
MODULE_DEVICE_TABLE(wmi, uniwill_wmi_device_ids);
MODULE_ALIAS_UNIWILL_WMI();

View file

@ -1,101 +0,0 @@
/*!
* Copyright (c) 2020 TUXEDO Computers GmbH <tux@tuxedocomputers.com>
*
* This file is part of tuxedo-keyboard.
*
* tuxedo-keyboard is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef UW_IO_H
#define UW_IO_H
#include <linux/kernel.h>
#include <linux/module.h>
union uw_ec_read_return {
u32 dword;
struct {
u8 data_low;
u8 data_high;
} bytes;
};
union uw_ec_write_return {
u32 dword;
struct {
u8 addr_low;
u8 addr_high;
u8 data_low;
u8 data_high;
} bytes;
};
typedef u32 (uw_ec_read_func)(u8, u8, union uw_ec_read_return *);
typedef u32 (uw_ec_write_func)(u8, u8, u8, u8, union uw_ec_write_return *);
extern uw_ec_read_func uw_ec_read_addr;
extern uw_ec_write_func uw_ec_write_addr;
/**
* uw ec read from tccwmi for now stuffed in this wrapper for simplification
*
* @returns The result of the tccwmi function, or -ENOENT
* if tccwmi symbol is not accessible
*/
static u32 __uw_ec_read_addr(u8 addr_low, u8 addr_high,
union uw_ec_read_return *output)
{
uw_ec_read_func *symbol_uw_ec_read_addr;
u32 result = 0;
symbol_uw_ec_read_addr = symbol_get(uw_ec_read_addr);
if (symbol_uw_ec_read_addr) {
result = symbol_uw_ec_read_addr(addr_low, addr_high, output);
} else {
pr_debug("tuxedo-cc-wmi symbols not found\n");
result = -ENOENT;
}
if (symbol_uw_ec_read_addr)
symbol_put(uw_ec_read_addr);
return result;
}
/**
* uw ec write from tccwmi for now stuffed in this wrapper for simplification
*
* @returns The result of the tccwmi function, or -ENOENT
* if tccwmi symbol is not accessible
*/
static u32 __uw_ec_write_addr(u8 addr_low, u8 addr_high, u8 data_low,
u8 data_high, union uw_ec_write_return *output)
{
uw_ec_write_func *symbol_uw_ec_write_addr;
u32 result = 0;
symbol_uw_ec_write_addr = symbol_get(uw_ec_write_addr);
if (symbol_uw_ec_write_addr) {
result = symbol_uw_ec_write_addr(addr_low, addr_high, data_low,
data_high, output);
} else {
pr_debug("tuxedo-cc-wmi symbols not found\n");
result = -ENOENT;
}
if (symbol_uw_ec_write_addr)
symbol_put(uw_ec_write_addr);
return result;
}
#endif

View file

@ -96,11 +96,13 @@ for POSTINST in /usr/lib/dkms/common.postinst /usr/share/%{module}/postinst; do
echo "(Re)load modules if possible" echo "(Re)load modules if possible"
rmmod tuxedo_io > /dev/null 2>&1 || true rmmod tuxedo_io > /dev/null 2>&1 || true
rmmod uniwill_wmi > /dev/null 2>&1 || true
rmmod clevo_wmi > /dev/null 2>&1 || true rmmod clevo_wmi > /dev/null 2>&1 || true
rmmod clevo_acpi > /dev/null 2>&1 || true rmmod clevo_acpi > /dev/null 2>&1 || true
rmmod tuxedo_keyboard > /dev/null 2>&1 || true rmmod tuxedo_keyboard > /dev/null 2>&1 || true
modprobe tuxedo_keyboard > /dev/null 2>&1 || true modprobe tuxedo_keyboard > /dev/null 2>&1 || true
modprobe uniwill_wmi > /dev/null 2>&1 || true
modprobe clevo_wmi > /dev/null 2>&1 || true modprobe clevo_wmi > /dev/null 2>&1 || true
modprobe clevo_acpi > /dev/null 2>&1 || true modprobe clevo_acpi > /dev/null 2>&1 || true
modprobe tuxedo_io > /dev/null 2>&1 || true modprobe tuxedo_io > /dev/null 2>&1 || true