/*! * Copyright (c) 2021 TUXEDO Computers GmbH * * This file is part of tuxedo-keyboard. * * tuxedo-keyboard is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. If not, see . */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "uniwill_interfaces.h" #define UNIWILL_EC_REG_LDAT 0x8a #define UNIWILL_EC_REG_HDAT 0x8b #define UNIWILL_EC_REG_FLAGS 0x8c #define UNIWILL_EC_REG_CMDL 0x8d #define UNIWILL_EC_REG_CMDH 0x8e #define UNIWILL_EC_BIT_RFLG 0 #define UNIWILL_EC_BIT_WFLG 1 #define UNIWILL_EC_BIT_BFLG 2 #define UNIWILL_EC_BIT_CFLG 3 #define UNIWILL_EC_BIT_DRDY 7 #define UW_EC_WAIT_CYCLES 0x50 static bool uniwill_ec_direct = true; DEFINE_MUTEX(uniwill_ec_lock); static u32 uw_wmi_ec_evaluate(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, u8 read_flag, u32 *return_buffer) { acpi_status status; union acpi_object *out_acpi; u32 e_result = 0; // Kernel buffer for input argument u32 *wmi_arg = (u32 *) kmalloc(sizeof(u32)*10, GFP_KERNEL); // Byte reference to the input buffer u8 *wmi_arg_bytes = (u8 *) wmi_arg; u8 wmi_instance = 0x00; u32 wmi_method_id = 0x04; struct acpi_buffer wmi_in = { (acpi_size) sizeof(wmi_arg), wmi_arg}; struct acpi_buffer wmi_out = { ACPI_ALLOCATE_BUFFER, NULL }; mutex_lock(&uniwill_ec_lock); // Zero input buffer memset(wmi_arg, 0x00, 10 * sizeof(u32)); // Configure the input buffer wmi_arg_bytes[0] = addr_low; wmi_arg_bytes[1] = addr_high; wmi_arg_bytes[2] = data_low; wmi_arg_bytes[3] = data_high; if (read_flag != 0) { wmi_arg_bytes[5] = 0x01; } status = wmi_evaluate_method(UNIWILL_WMI_MGMT_GUID_BC, wmi_instance, wmi_method_id, &wmi_in, &wmi_out); out_acpi = (union acpi_object *) wmi_out.pointer; if (out_acpi && out_acpi->type == ACPI_TYPE_BUFFER) { memcpy(return_buffer, out_acpi->buffer.pointer, out_acpi->buffer.length); } /* else if (out_acpi && out_acpi->type == ACPI_TYPE_INTEGER) { e_result = (u32) out_acpi->integer.value; }*/ if (ACPI_FAILURE(status)) { pr_err("uniwill_wmi.h: Error evaluating method\n"); e_result = -EIO; } kfree(out_acpi); kfree(wmi_arg); mutex_unlock(&uniwill_ec_lock); return e_result; } /** * EC address read through WMI */ static u32 uw_ec_read_addr_wmi(u8 addr_low, u8 addr_high, union uw_ec_read_return *output) { u32 uw_data[10]; u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, 0x00, 0x00, 1, uw_data); output->dword = uw_data[0]; // pr_debug("addr: 0x%02x%02x value: %0#4x (high: %0#4x) result: %d\n", addr_high, addr_low, output->bytes.data_low, output->bytes.data_high, ret); return ret; } /** * EC address write through WMI */ static u32 uw_ec_write_addr_wmi(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output) { u32 uw_data[10]; u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, data_low, data_high, 0, uw_data); output->dword = uw_data[0]; return ret; } /** * Direct EC address read */ static u32 uw_ec_read_addr_direct(u8 addr_low, u8 addr_high, union uw_ec_read_return *output) { u32 result; u8 tmp, count, flags; mutex_lock(&uniwill_ec_lock); ec_write(UNIWILL_EC_REG_LDAT, addr_low); ec_write(UNIWILL_EC_REG_HDAT, addr_high); flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_RFLG); ec_write(UNIWILL_EC_REG_FLAGS, flags); // Wait for ready flag count = UW_EC_WAIT_CYCLES; ec_read(UNIWILL_EC_REG_FLAGS, &tmp); while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) { msleep(1); ec_read(UNIWILL_EC_REG_FLAGS, &tmp); count -= 1; } if (count != 0) { output->dword = 0; ec_read(UNIWILL_EC_REG_CMDL, &tmp); output->bytes.data_low = tmp; ec_read(UNIWILL_EC_REG_CMDH, &tmp); output->bytes.data_high = tmp; result = 0; } else { output->dword = 0xfefefefe; result = -EIO; } ec_write(UNIWILL_EC_REG_FLAGS, 0x00); mutex_unlock(&uniwill_ec_lock); // pr_debug("addr: 0x%02x%02x value: %0#4x result: %d\n", addr_high, addr_low, output->bytes.data_low, result); return result; } static u32 uw_ec_write_addr_direct(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output) { u32 result = 0; u8 tmp, count, flags; mutex_lock(&uniwill_ec_lock); ec_write(UNIWILL_EC_REG_LDAT, addr_low); ec_write(UNIWILL_EC_REG_HDAT, addr_high); ec_write(UNIWILL_EC_REG_CMDL, data_low); ec_write(UNIWILL_EC_REG_CMDH, data_high); flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_WFLG); ec_write(UNIWILL_EC_REG_FLAGS, flags); // Wait for ready flag count = UW_EC_WAIT_CYCLES; ec_read(UNIWILL_EC_REG_FLAGS, &tmp); while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) { msleep(1); ec_read(UNIWILL_EC_REG_FLAGS, &tmp); count -= 1; } // Replicate wmi output depending on success if (count != 0) { output->bytes.addr_low = addr_low; output->bytes.addr_high = addr_high; output->bytes.data_low = data_low; output->bytes.data_high = data_high; result = 0; } else { output->dword = 0xfefefefe; result = -EIO; } ec_write(UNIWILL_EC_REG_FLAGS, 0x00); mutex_unlock(&uniwill_ec_lock); return result; } u32 uw_wmi_read_ec_ram(u16 addr, u8 *data) { u32 result; u8 addr_low, addr_high; union uw_ec_read_return output; if (IS_ERR_OR_NULL(data)) return -EINVAL; addr_low = addr & 0xff; addr_high = (addr >> 8) & 0xff; if (uniwill_ec_direct) { result = uw_ec_read_addr_direct(addr_low, addr_high, &output); } else { result = uw_ec_read_addr_wmi(addr_low, addr_high, &output); } *data = output.bytes.data_low; return result; } u32 uw_wmi_write_ec_ram(u16 addr, u8 data) { u32 result; u8 addr_low, addr_high, data_low, data_high; union uw_ec_write_return output; addr_low = addr & 0xff; addr_high = (addr >> 8) & 0xff; data_low = data; data_high = 0x00; if (uniwill_ec_direct) result = uw_ec_write_addr_direct(addr_low, addr_high, data_low, data_high, &output); else result = uw_ec_write_addr_wmi(addr_low, addr_high, data_low, data_high, &output); return result; } struct uniwill_interface_t uniwill_wmi_interface = { .string_id = UNIWILL_INTERFACE_WMI_STRID, .read_ec_ram = uw_wmi_read_ec_ram, .write_ec_ram = uw_wmi_write_ec_ram }; #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 3, 0) static int uniwill_wmi_probe(struct wmi_device *wdev) #else static int uniwill_wmi_probe(struct wmi_device *wdev, const void *dummy_context) #endif { int status; // Look for for GUIDs used on uniwill devices status = wmi_has_guid(UNIWILL_WMI_EVENT_GUID_0) && wmi_has_guid(UNIWILL_WMI_EVENT_GUID_1) && wmi_has_guid(UNIWILL_WMI_EVENT_GUID_2) && wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BA) && wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BB) && wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BC); if (!status) { pr_debug("probe: At least one Uniwill GUID missing\n"); return -ENODEV; } uniwill_add_interface(&uniwill_wmi_interface); pr_info("interface initialized\n"); return 0; } #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0) static int uniwill_wmi_remove(struct wmi_device *wdev) #else static void uniwill_wmi_remove(struct wmi_device *wdev) #endif { pr_debug("uniwill_wmi driver remove\n"); uniwill_remove_interface(&uniwill_wmi_interface); #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0) return 0; #endif } static void uniwill_wmi_notify(struct wmi_device *wdev, union acpi_object *obj) { u32 code; if (!IS_ERR_OR_NULL(uniwill_wmi_interface.event_callb)) { if (obj) { if (obj->type == ACPI_TYPE_INTEGER) { code = obj->integer.value; // Execute registered callback uniwill_wmi_interface.event_callb(code); } else { pr_debug("unknown event type - %d (%0#6x)\n", obj->type, obj->type); } } else { pr_debug("expected ACPI object doesn't exist\n"); } } else { pr_debug("no registered callback\n"); } } static const struct wmi_device_id uniwill_wmi_device_ids[] = { // Listing one should be enough, for a driver that "takes care of all anyways" // also prevents probe (and handling) per "device" { .guid_string = UNIWILL_WMI_EVENT_GUID_2 }, { } }; static struct wmi_driver uniwill_wmi_driver = { .driver = { .name = UNIWILL_INTERFACE_WMI_STRID, .owner = THIS_MODULE }, .id_table = uniwill_wmi_device_ids, .probe = uniwill_wmi_probe, .remove = uniwill_wmi_remove, .notify = uniwill_wmi_notify, }; module_wmi_driver(uniwill_wmi_driver); MODULE_AUTHOR("TUXEDO Computers GmbH "); MODULE_DESCRIPTION("Driver for Uniwill WMI interface"); MODULE_VERSION("0.0.1"); MODULE_LICENSE("GPL"); /* * If set to true, the module will use the replicated WMI functions * (direct ec_read/ec_write) to read and write to the EC RAM instead * of the original. Since the original functions, in all observed cases, * use excessive delays, they are not preferred. */ module_param_cb(ec_direct_io, ¶m_ops_bool, &uniwill_ec_direct, S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH); MODULE_PARM_DESC(ec_direct_io, "Do not use WMI methods to read/write EC RAM (default: true)."); MODULE_DEVICE_TABLE(wmi, uniwill_wmi_device_ids); MODULE_ALIAS_UNIWILL_WMI();