/*! * Copyright (c) 2020 TUXEDO Computers GmbH * * This file is part of tuxedo-cc-wmi. * * tuxedo-cc-wmi is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. If not, see . */ #include #include #include #include #define UNIWILL_WMI_MGMT_GUID_BA "ABBC0F6D-8EA1-11D1-00A0-C90629100000" #define UNIWILL_WMI_MGMT_GUID_BB "ABBC0F6E-8EA1-11D1-00A0-C90629100000" #define UNIWILL_WMI_MGMT_GUID_BC "ABBC0F6F-8EA1-11D1-00A0-C90629100000" #define UNIWILL_WMI_EVENT_GUID_0 "ABBC0F70-8EA1-11D1-00A0-C90629100000" #define UNIWILL_WMI_EVENT_GUID_1 "ABBC0F71-8EA1-11D1-00A0-C90629100000" #define UNIWILL_WMI_EVENT_GUID_2 "ABBC0F72-8EA1-11D1-00A0-C90629100000" #define UNIWILL_EC_REG_LDAT 0x8a #define UNIWILL_EC_REG_HDAT 0x8b #define UNIWILL_EC_REG_FLAGS 0x8c #define UNIWILL_EC_REG_CMDL 0x8d #define UNIWILL_EC_REG_CMDH 0x8e #define UNIWILL_EC_BIT_RFLG 0 #define UNIWILL_EC_BIT_WFLG 1 #define UNIWILL_EC_BIT_BFLG 2 #define UNIWILL_EC_BIT_CFLG 3 #define UNIWILL_EC_BIT_DRDY 7 #define UW_EC_WAIT_CYCLES 0x50 union uw_ec_read_return { u32 dword; struct { u8 data_low; u8 data_high; } bytes; }; union uw_ec_write_return { u32 dword; struct { u8 addr_low; u8 addr_high; u8 data_low; u8 data_high; } bytes; }; static bool uniwill_ec_direct = true; DEFINE_MUTEX(uniwill_ec_lock); static u32 uw_wmi_ec_evaluate(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, u8 read_flag, u32 *return_buffer) { acpi_status status; union acpi_object *out_acpi; u32 e_result = 0; // Kernel buffer for input argument u32 *wmi_arg = (u32 *) kmalloc(sizeof(u32)*10, GFP_KERNEL); // Byte reference to the input buffer u8 *wmi_arg_bytes = (u8 *) wmi_arg; u8 wmi_instance = 0x00; u32 wmi_method_id = 0x04; struct acpi_buffer wmi_in = { (acpi_size) sizeof(wmi_arg), wmi_arg}; struct acpi_buffer wmi_out = { ACPI_ALLOCATE_BUFFER, NULL }; mutex_lock(&uniwill_ec_lock); // Zero input buffer memset(wmi_arg, 0x00, 10 * sizeof(u32)); // Configure the input buffer wmi_arg_bytes[0] = addr_low; wmi_arg_bytes[1] = addr_high; wmi_arg_bytes[2] = data_low; wmi_arg_bytes[3] = data_high; if (read_flag != 0) { wmi_arg_bytes[5] = 0x01; } status = wmi_evaluate_method(UNIWILL_WMI_MGMT_GUID_BC, wmi_instance, wmi_method_id, &wmi_in, &wmi_out); out_acpi = (union acpi_object *) wmi_out.pointer; if (out_acpi && out_acpi->type == ACPI_TYPE_BUFFER) { memcpy(return_buffer, out_acpi->buffer.pointer, out_acpi->buffer.length); } /* else if (out_acpi && out_acpi->type == ACPI_TYPE_INTEGER) { e_result = (u32) out_acpi->integer.value; }*/ if (ACPI_FAILURE(status)) { pr_err("uniwill_wmi.h: Error evaluating method\n"); e_result = -EIO; } kfree(out_acpi); kfree(wmi_arg); mutex_unlock(&uniwill_ec_lock); return e_result; } /** * EC address read through WMI */ static u32 uw_ec_read_addr_wmi(u8 addr_low, u8 addr_high, union uw_ec_read_return *output) { u32 uw_data[10]; u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, 0x00, 0x00, 1, uw_data); output->dword = uw_data[0]; pr_debug("addr: 0x%02x%02x value: %0#4x (high: %0#4x) result: %d\n", addr_high, addr_low, output->bytes.data_low, output->bytes.data_high, ret); return ret; } /** * EC address write through WMI */ static u32 uw_ec_write_addr_wmi(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output) { u32 uw_data[10]; u32 ret = uw_wmi_ec_evaluate(addr_low, addr_high, data_low, data_high, 0, uw_data); output->dword = uw_data[0]; return ret; } /** * Direct EC address read */ static u32 uw_ec_read_addr_direct(u8 addr_low, u8 addr_high, union uw_ec_read_return *output) { u32 result; u8 tmp, count, flags; mutex_lock(&uniwill_ec_lock); ec_write(UNIWILL_EC_REG_LDAT, addr_low); ec_write(UNIWILL_EC_REG_HDAT, addr_high); flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_RFLG); ec_write(UNIWILL_EC_REG_FLAGS, flags); // Wait for ready flag count = UW_EC_WAIT_CYCLES; ec_read(UNIWILL_EC_REG_FLAGS, &tmp); while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) { msleep(1); ec_read(UNIWILL_EC_REG_FLAGS, &tmp); count -= 1; } if (count != 0) { output->dword = 0; ec_read(UNIWILL_EC_REG_CMDL, &tmp); output->bytes.data_low = tmp; ec_read(UNIWILL_EC_REG_CMDH, &tmp); output->bytes.data_high = tmp; result = 0; } else { output->dword = 0xfefefefe; result = -EIO; } ec_write(UNIWILL_EC_REG_FLAGS, 0x00); mutex_unlock(&uniwill_ec_lock); pr_debug("addr: 0x%02x%02x value: %0#4x result: %d\n", addr_high, addr_low, output->bytes.data_low, result); return result; } static u32 uw_ec_write_addr_direct(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output) { u32 result = 0; u8 tmp, count, flags; mutex_lock(&uniwill_ec_lock); ec_write(UNIWILL_EC_REG_LDAT, addr_low); ec_write(UNIWILL_EC_REG_HDAT, addr_high); ec_write(UNIWILL_EC_REG_CMDL, data_low); ec_write(UNIWILL_EC_REG_CMDH, data_high); flags = (0 << UNIWILL_EC_BIT_DRDY) | (1 << UNIWILL_EC_BIT_WFLG); ec_write(UNIWILL_EC_REG_FLAGS, flags); // Wait for ready flag count = UW_EC_WAIT_CYCLES; ec_read(UNIWILL_EC_REG_FLAGS, &tmp); while (((tmp & (1 << UNIWILL_EC_BIT_DRDY)) == 0) && count != 0) { msleep(1); ec_read(UNIWILL_EC_REG_FLAGS, &tmp); count -= 1; } // Replicate wmi output depending on success if (count != 0) { output->bytes.addr_low = addr_low; output->bytes.addr_high = addr_high; output->bytes.data_low = data_low; output->bytes.data_high = data_high; result = 0; } else { output->dword = 0xfefefefe; result = -EIO; } ec_write(UNIWILL_EC_REG_FLAGS, 0x00); mutex_unlock(&uniwill_ec_lock); return result; } u32 uw_ec_read_addr(u8 addr_low, u8 addr_high, union uw_ec_read_return *output) { if (uniwill_ec_direct) { return uw_ec_read_addr_direct(addr_low, addr_high, output); } else { return uw_ec_read_addr_wmi(addr_low, addr_high, output); } } EXPORT_SYMBOL(uw_ec_read_addr); u32 uw_ec_write_addr(u8 addr_low, u8 addr_high, u8 data_low, u8 data_high, union uw_ec_write_return *output) { if (uniwill_ec_direct) { return uw_ec_write_addr_direct(addr_low, addr_high, data_low, data_high, output); } else { return uw_ec_write_addr_wmi(addr_low, addr_high, data_low, data_high, output); } } EXPORT_SYMBOL(uw_ec_write_addr); static u32 uniwill_identify(void) { int status; // Look for for GUIDs used on uniwill devices status = wmi_has_guid(UNIWILL_WMI_EVENT_GUID_0) && wmi_has_guid(UNIWILL_WMI_EVENT_GUID_1) && wmi_has_guid(UNIWILL_WMI_EVENT_GUID_2) && wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BA) && wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BB) && wmi_has_guid(UNIWILL_WMI_MGMT_GUID_BC); if (!status) { pr_debug("probe: At least one Uniwill GUID missing\n"); return -ENODEV; } return 0; } static void uniwill_init(void) { union uw_ec_write_return reg_write_return; // Enable manual mode uw_ec_write_addr(0x41, 0x07, 0x01, 0x00, ®_write_return); // Zero second fan temp for detection uw_ec_write_addr(0x4f, 0x04, 0x00, 0x00, ®_write_return); } static void uniwill_exit(void) { union uw_ec_write_return reg_write_return; // Disable manual mode uw_ec_write_addr(0x41, 0x07, 0x00, 0x00, ®_write_return); }