/*! * Copyright (c) 2020-2021 TUXEDO Computers GmbH * * This file is part of tuxedo-keyboard. * * tuxedo-keyboard is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. If not, see . */ #ifndef UNIWILL_KEYBOARD_H #define UNIWILL_KEYBOARD_H #include "tuxedo_keyboard_common.h" #include #include #include #include #include #include #include #include #include #include #include "uniwill_interfaces.h" #include "uniwill_leds.h" #define UNIWILL_OSD_RADIOON 0x01A #define UNIWILL_OSD_RADIOOFF 0x01B #define UNIWILL_OSD_KB_LED_LEVEL0 0x03B #define UNIWILL_OSD_KB_LED_LEVEL1 0x03C #define UNIWILL_OSD_KB_LED_LEVEL2 0x03D #define UNIWILL_OSD_KB_LED_LEVEL3 0x03E #define UNIWILL_OSD_KB_LED_LEVEL4 0x03F #define UNIWILL_OSD_DC_ADAPTER_CHANGE 0x0AB #define UNIWILL_OSD_MODE_CHANGE_KEY_EVENT 0x0B0 #define UNIWILL_KEY_RFKILL 0x0A4 #define UNIWILL_KEY_KBDILLUMDOWN 0x0B1 #define UNIWILL_KEY_KBDILLUMUP 0x0B2 #define UNIWILL_KEY_KBDILLUMTOGGLE 0x0B9 #define UNIWILL_OSD_TOUCHPADWORKAROUND 0xFFF static void uw_charging_priority_write_state(void); static void uw_charging_profile_write_state(void); struct tuxedo_keyboard_driver uniwill_keyboard_driver; struct uniwill_device_features_t uniwill_device_features; static bool uw_feats_loaded = false; static u8 uniwill_kbd_bl_enable_state_on_start; static struct key_entry uniwill_wmi_keymap[] = { // { KE_KEY, UNIWILL_OSD_RADIOON, { KEY_RFKILL } }, // { KE_KEY, UNIWILL_OSD_RADIOOFF, { KEY_RFKILL } }, // { KE_KEY, 0xb0, { KEY_F13 } }, // Manual mode rfkill { KE_KEY, UNIWILL_KEY_RFKILL, { KEY_RFKILL }}, { KE_KEY, UNIWILL_OSD_TOUCHPADWORKAROUND, { KEY_F21 } }, // Keyboard brightness { KE_KEY, UNIWILL_KEY_KBDILLUMDOWN, { KEY_KBDILLUMDOWN } }, { KE_KEY, UNIWILL_KEY_KBDILLUMUP, { KEY_KBDILLUMUP } }, { KE_KEY, UNIWILL_KEY_KBDILLUMTOGGLE, { KEY_KBDILLUMTOGGLE } }, { KE_KEY, UNIWILL_OSD_KB_LED_LEVEL0, { KEY_KBDILLUMTOGGLE } }, { KE_KEY, UNIWILL_OSD_KB_LED_LEVEL1, { KEY_KBDILLUMTOGGLE } }, { KE_KEY, UNIWILL_OSD_KB_LED_LEVEL2, { KEY_KBDILLUMTOGGLE } }, { KE_KEY, UNIWILL_OSD_KB_LED_LEVEL3, { KEY_KBDILLUMTOGGLE } }, { KE_KEY, UNIWILL_OSD_KB_LED_LEVEL4, { KEY_KBDILLUMTOGGLE } }, // Only used to put ev bits { KE_KEY, 0xffff, { KEY_F6 } }, { KE_KEY, 0xffff, { KEY_LEFTALT } }, { KE_KEY, 0xffff, { KEY_LEFTMETA } }, { KE_END, 0 } }; static struct uniwill_interfaces_t { struct uniwill_interface_t *wmi; } uniwill_interfaces = { .wmi = NULL }; uniwill_event_callb_t uniwill_event_callb; int uniwill_read_ec_ram(u16 address, u8 *data) { int status; if (!IS_ERR_OR_NULL(uniwill_interfaces.wmi)) status = uniwill_interfaces.wmi->read_ec_ram(address, data); else { pr_err("no active interface while read addr 0x%04x\n", address); status = -EIO; } return status; } EXPORT_SYMBOL(uniwill_read_ec_ram); int uniwill_write_ec_ram(u16 address, u8 data) { int status; if (!IS_ERR_OR_NULL(uniwill_interfaces.wmi)) status = uniwill_interfaces.wmi->write_ec_ram(address, data); else { pr_err("no active interface while write addr 0x%04x data 0x%02x\n", address, data); status = -EIO; } return status; } EXPORT_SYMBOL(uniwill_write_ec_ram); int uniwill_write_ec_ram_with_retry(u16 address, u8 data, int retries) { u32 status; int i; u8 control_data; for (i = 0; i < retries; ++i) { status = uniwill_write_ec_ram(address, data); if (status != 0) { msleep(50); continue; } else { status = uniwill_read_ec_ram(address, &control_data); if (status != 0 || data != control_data) { msleep(50); continue; } break; } } return status; } EXPORT_SYMBOL(uniwill_write_ec_ram_with_retry); static DEFINE_MUTEX(uniwill_interface_modification_lock); int uniwill_add_interface(struct uniwill_interface_t *interface) { mutex_lock(&uniwill_interface_modification_lock); if (strcmp(interface->string_id, UNIWILL_INTERFACE_WMI_STRID) == 0) uniwill_interfaces.wmi = interface; else { TUXEDO_DEBUG("trying to add unknown interface\n"); mutex_unlock(&uniwill_interface_modification_lock); return -EINVAL; } interface->event_callb = uniwill_event_callb; mutex_unlock(&uniwill_interface_modification_lock); // Initialize driver if not already present tuxedo_keyboard_init_driver(&uniwill_keyboard_driver); return 0; } EXPORT_SYMBOL(uniwill_add_interface); int uniwill_remove_interface(struct uniwill_interface_t *interface) { mutex_lock(&uniwill_interface_modification_lock); if (strcmp(interface->string_id, UNIWILL_INTERFACE_WMI_STRID) == 0) { // Remove driver if last interface is removed tuxedo_keyboard_remove_driver(&uniwill_keyboard_driver); uniwill_interfaces.wmi = NULL; } else { mutex_unlock(&uniwill_interface_modification_lock); return -EINVAL; } mutex_unlock(&uniwill_interface_modification_lock); return 0; } EXPORT_SYMBOL(uniwill_remove_interface); int uniwill_get_active_interface_id(char **id_str) { if (IS_ERR_OR_NULL(uniwill_interfaces.wmi)) return -ENODEV; if (!IS_ERR_OR_NULL(id_str)) *id_str = uniwill_interfaces.wmi->string_id; return 0; } EXPORT_SYMBOL(uniwill_get_active_interface_id); static void key_event_work(struct work_struct *work) { sparse_keymap_report_known_event( uniwill_keyboard_driver.input_device, UNIWILL_OSD_TOUCHPADWORKAROUND, 1, true ); } // Previous key codes for detecting longer combination static u32 prev_key = 0, prevprev_key = 0; static DECLARE_WORK(uniwill_key_event_work, key_event_work); static int keyboard_notifier_callb(struct notifier_block *nb, unsigned long code, void *_param) { struct keyboard_notifier_param *param = _param; int ret = NOTIFY_OK; if (!param->down) { if (code == KBD_KEYCODE) { switch (param->value) { case 125: // If the last keys up were 85 -> 29 -> 125 // manually report KEY_F21 if (prevprev_key == 85 && prev_key == 29) { TUXEDO_DEBUG("Touchpad Toggle\n"); schedule_work(&uniwill_key_event_work); ret = NOTIFY_OK; } break; } prevprev_key = prev_key; prev_key = param->value; } } return ret; } static struct notifier_block keyboard_notifier_block = { .notifier_call = keyboard_notifier_callb }; static void uniwill_write_kbd_bl_enable(u8 enable) { u8 backlight_data; enable = enable & 0x01; uniwill_read_ec_ram(UW_EC_REG_KBD_BL_STATUS, &backlight_data); backlight_data = backlight_data & ~(1 << 1); backlight_data |= (!enable << 1); uniwill_write_ec_ram(UW_EC_REG_KBD_BL_STATUS, backlight_data); } void uniwill_event_callb(u32 code) { if (uniwill_keyboard_driver.input_device != NULL) if (!sparse_keymap_report_known_event(uniwill_keyboard_driver.input_device, code, 1, true)) { TUXEDO_DEBUG("Unknown code - %d (%0#6x)\n", code, code); } // Special key combination when mode change key is pressed if (code == UNIWILL_OSD_MODE_CHANGE_KEY_EVENT) { input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTMETA, 1); input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTALT, 1); input_report_key(uniwill_keyboard_driver.input_device, KEY_F6, 1); input_sync(uniwill_keyboard_driver.input_device); input_report_key(uniwill_keyboard_driver.input_device, KEY_F6, 0); input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTALT, 0); input_report_key(uniwill_keyboard_driver.input_device, KEY_LEFTMETA, 0); input_sync(uniwill_keyboard_driver.input_device); } // Refresh keyboard state and charging prio on cable switch event if (code == UNIWILL_OSD_DC_ADAPTER_CHANGE) { uniwill_leds_restore_state_extern(); msleep(50); uw_charging_priority_write_state(); } } static void uw_kbd_bl_init_set(struct platform_device *dev) { uniwill_leds_init_late(dev); uniwill_write_kbd_bl_enable(1); } // Keep track of previous colors on start, init array with different non-colors static u32 uw_prev_colors[] = {0x01000000, 0x02000000, 0x03000000}; static u32 uw_prev_colors_size = 3; static u32 uw_prev_colors_index = 0; // Timer for checking animation colors static struct timer_list uw_kbd_bl_init_timer; static volatile int uw_kbd_bl_check_count = 40; static int uw_kbd_bl_init_check_interval_ms = 500; static int uniwill_read_kbd_bl_rgb(u8 *red, u8 *green, u8 *blue) { int result = 0; result = uniwill_read_ec_ram(UW_EC_REG_KBD_BL_RGB_RED_BRIGHTNESS, red); if (result) { return result; } result = uniwill_read_ec_ram(UW_EC_REG_KBD_BL_RGB_GREEN_BRIGHTNESS, green); if (result) { return result; } result = uniwill_read_ec_ram(UW_EC_REG_KBD_BL_RGB_BLUE_BRIGHTNESS, blue); if (result) { return result; } return result; } static struct platform_device *uw_kbd_bl_init_ready_check_work_func_args_dev; static void uw_kbd_bl_init_ready_check_work_func(struct work_struct *work) { u8 uw_cur_red, uw_cur_green, uw_cur_blue; int i; bool prev_colors_same; uniwill_read_kbd_bl_rgb(&uw_cur_red, &uw_cur_green, &uw_cur_blue); uw_prev_colors[uw_prev_colors_index] = (uw_cur_red << 0x10) | (uw_cur_green << 0x08) | uw_cur_blue; uw_prev_colors_index = (uw_prev_colors_index + 1) % uw_prev_colors_size; prev_colors_same = true; for (i = 1; i < uw_prev_colors_size; ++i) { if (uw_prev_colors[i-1] != uw_prev_colors[i]) prev_colors_same = false; } if (prev_colors_same) { uw_kbd_bl_init_set(uw_kbd_bl_init_ready_check_work_func_args_dev); del_timer(&uw_kbd_bl_init_timer); } else { if (uw_kbd_bl_check_count != 0) { mod_timer(&uw_kbd_bl_init_timer, jiffies + msecs_to_jiffies(uw_kbd_bl_init_check_interval_ms)); } else { TUXEDO_INFO("uw kbd init timeout, failed to detect end of boot animation\n"); del_timer(&uw_kbd_bl_init_timer); } } uw_kbd_bl_check_count -= 1; } static DECLARE_WORK(uw_kbd_bl_init_ready_check_work, uw_kbd_bl_init_ready_check_work_func); static void uw_kbd_bl_init_ready_check(struct timer_list *t) { schedule_work(&uw_kbd_bl_init_ready_check_work); } static int uw_kbd_bl_init(struct platform_device *dev) { int status = 0; #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 18, 0) TUXEDO_ERROR("Warning: Kernel version less that 4.18, keyboard backlight might not be properly recognized."); #endif uniwill_leds_init_early(dev); if (uniwill_leds_get_backlight_type() == UNIWILL_KB_BACKLIGHT_TYPE_1_ZONE_RGB) { // Start periodic checking of animation, set and enable bl when done uw_kbd_bl_init_ready_check_work_func_args_dev = dev; timer_setup(&uw_kbd_bl_init_timer, uw_kbd_bl_init_ready_check, 0); mod_timer(&uw_kbd_bl_init_timer, jiffies + msecs_to_jiffies(uw_kbd_bl_init_check_interval_ms)); } else { // For non-RGB versions // Enable keyboard backlight immediately (should it be disabled) uniwill_write_kbd_bl_enable(1); } return status; } #define UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS 0x24 #define UNIWILL_LIGHTBAR_LED_NAME_RGB_RED "lightbar_rgb:1:status" #define UNIWILL_LIGHTBAR_LED_NAME_RGB_GREEN "lightbar_rgb:2:status" #define UNIWILL_LIGHTBAR_LED_NAME_RGB_BLUE "lightbar_rgb:3:status" #define UNIWILL_LIGHTBAR_LED_NAME_ANIMATION "lightbar_animation::status" static void uniwill_write_lightbar_rgb(u8 red, u8 green, u8 blue) { if (red <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) { uniwill_write_ec_ram(0x0749, red); } if (green <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) { uniwill_write_ec_ram(0x074a, green); } if (blue <= UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS) { uniwill_write_ec_ram(0x074b, blue); } } static void uniwill_read_lightbar_rgb(u8 *red, u8 *green, u8 *blue) { uniwill_read_ec_ram(0x0749, red); uniwill_read_ec_ram(0x074a, green); uniwill_read_ec_ram(0x074b, blue); } static void uniwill_write_lightbar_animation(bool animation_status) { u8 value; uniwill_read_ec_ram(0x0748, &value); if (animation_status) { value |= 0x80; } else { value &= ~0x80; } uniwill_write_ec_ram(0x0748, value); } static void uniwill_read_lightbar_animation(bool *animation_status) { u8 lightbar_animation_data; uniwill_read_ec_ram(0x0748, &lightbar_animation_data); *animation_status = (lightbar_animation_data & 0x80) > 0; } static int lightbar_set_blocking(struct led_classdev *led_cdev, enum led_brightness brightness) { u8 red = 0xff, green = 0xff, blue = 0xff; bool led_red = strstr(led_cdev->name, UNIWILL_LIGHTBAR_LED_NAME_RGB_RED) != NULL; bool led_green = strstr(led_cdev->name, UNIWILL_LIGHTBAR_LED_NAME_RGB_GREEN) != NULL; bool led_blue = strstr(led_cdev->name, UNIWILL_LIGHTBAR_LED_NAME_RGB_BLUE) != NULL; bool led_animation = strstr(led_cdev->name, UNIWILL_LIGHTBAR_LED_NAME_ANIMATION) != NULL; if (led_red || led_green || led_blue) { if (led_red) { red = brightness; } else if (led_green) { green = brightness; } else if (led_blue) { blue = brightness; } uniwill_write_lightbar_rgb(red, green, blue); // Also make sure the animation is off uniwill_write_lightbar_animation(false); } else if (led_animation) { if (brightness == 1) { uniwill_write_lightbar_animation(true); } else { uniwill_write_lightbar_animation(false); } } return 0; } static enum led_brightness lightbar_get(struct led_classdev *led_cdev) { u8 red, green, blue; bool animation_status; bool led_red = strstr(led_cdev->name, UNIWILL_LIGHTBAR_LED_NAME_RGB_RED) != NULL; bool led_green = strstr(led_cdev->name, UNIWILL_LIGHTBAR_LED_NAME_RGB_GREEN) != NULL; bool led_blue = strstr(led_cdev->name, UNIWILL_LIGHTBAR_LED_NAME_RGB_BLUE) != NULL; bool led_animation = strstr(led_cdev->name, UNIWILL_LIGHTBAR_LED_NAME_ANIMATION) != NULL; if (led_red || led_green || led_blue) { uniwill_read_lightbar_rgb(&red, &green, &blue); if (led_red) { return red; } else if (led_green) { return green; } else if (led_blue) { return blue; } } else if (led_animation) { uniwill_read_lightbar_animation(&animation_status); return animation_status ? 1 : 0; } return 0; } static bool uw_lightbar_loaded; static struct led_classdev lightbar_led_classdevs[] = { { .name = UNIWILL_LIGHTBAR_LED_NAME_RGB_RED, .max_brightness = UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS, .brightness_set_blocking = &lightbar_set_blocking, .brightness_get = &lightbar_get }, { .name = UNIWILL_LIGHTBAR_LED_NAME_RGB_GREEN, .max_brightness = UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS, .brightness_set_blocking = &lightbar_set_blocking, .brightness_get = &lightbar_get }, { .name = UNIWILL_LIGHTBAR_LED_NAME_RGB_BLUE, .max_brightness = UNIWILL_LIGHTBAR_LED_MAX_BRIGHTNESS, .brightness_set_blocking = &lightbar_set_blocking, .brightness_get = &lightbar_get }, { .name = UNIWILL_LIGHTBAR_LED_NAME_ANIMATION, .max_brightness = 1, .brightness_set_blocking = &lightbar_set_blocking, .brightness_get = &lightbar_get } }; static int uw_lightbar_init(struct platform_device *dev) { int i, j, status; bool lightbar_supported = false || dmi_match(DMI_BOARD_NAME, "LAPQC71A") || dmi_match(DMI_BOARD_NAME, "LAPQC71B") || dmi_match(DMI_BOARD_NAME, "TRINITY1501I") || dmi_match(DMI_BOARD_NAME, "TRINITY1701I") || dmi_match(DMI_PRODUCT_NAME, "A60 MUV") #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 18, 0) || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XA03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI04") || dmi_match(DMI_PRODUCT_SKU, "STEPOL1XA04") #endif ; #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 18, 0) TUXEDO_ERROR( "Warning: Kernel version less that 4.18, lightbar might not be properly recognized."); #endif if (!lightbar_supported) return -ENODEV; for (i = 0; i < ARRAY_SIZE(lightbar_led_classdevs); ++i) { status = led_classdev_register(&dev->dev, &lightbar_led_classdevs[i]); if (status < 0) { for (j = 0; j < i; j++) led_classdev_unregister(&lightbar_led_classdevs[j]); return status; } } // Init default state uniwill_write_lightbar_animation(false); uniwill_write_lightbar_rgb(0, 0, 0); return 0; } static int uw_lightbar_remove(struct platform_device *dev) { int i; for (i = 0; i < ARRAY_SIZE(lightbar_led_classdevs); ++i) { led_classdev_unregister(&lightbar_led_classdevs[i]); } return 0; } static bool uw_charging_prio_loaded = false; static bool uw_charging_prio_last_written_value; static ssize_t uw_charging_prios_available_show(struct device *child, struct device_attribute *attr, char *buffer); static ssize_t uw_charging_prio_show(struct device *child, struct device_attribute *attr, char *buffer); static ssize_t uw_charging_prio_store(struct device *child, struct device_attribute *attr, const char *buffer, size_t size); struct uw_charging_prio_attrs_t { struct device_attribute charging_prios_available; struct device_attribute charging_prio; } uw_charging_prio_attrs = { .charging_prios_available = __ATTR(charging_prios_available, 0444, uw_charging_prios_available_show, NULL), .charging_prio = __ATTR(charging_prio, 0644, uw_charging_prio_show, uw_charging_prio_store) }; static struct attribute *uw_charging_prio_attrs_list[] = { &uw_charging_prio_attrs.charging_prios_available.attr, &uw_charging_prio_attrs.charging_prio.attr, NULL }; static struct attribute_group uw_charging_prio_attr_group = { .name = "charging_priority", .attrs = uw_charging_prio_attrs_list }; /* * charging_prio values * 0 => charging priority * 1 => performance priority */ static int uw_set_charging_priority(u8 charging_priority) { u8 previous_data, next_data; int result; charging_priority = (charging_priority & 0x01) << 7; result = uniwill_read_ec_ram(0x07cc, &previous_data); if (result != 0) return result; next_data = (previous_data & ~(1 << 7)) | charging_priority; result = uniwill_write_ec_ram(0x07cc, next_data); if (result == 0) uw_charging_prio_last_written_value = charging_priority; return result; } static int uw_get_charging_priority(u8 *charging_priority) { int result = uniwill_read_ec_ram(0x07cc, charging_priority); *charging_priority = (*charging_priority >> 7) & 0x01; return result; } static int uw_has_charging_priority(bool *status) { u8 data; int result; bool not_supported_device = false || dmi_match(DMI_BOARD_NAME, "PF5PU1G") || dmi_match(DMI_BOARD_NAME, "LAPQC71A") || dmi_match(DMI_BOARD_NAME, "LAPQC71B") || dmi_match(DMI_PRODUCT_NAME, "A60 MUV") ; if (not_supported_device) { *status = false; return 0; } result = uniwill_read_ec_ram(0x0742, &data); if (result != 0) return -EIO; if (data & (1 << 5)) *status = true; else *status = false; return 0; } static void uw_charging_priority_write_state(void) { if (uw_charging_prio_loaded) uw_set_charging_priority(uw_charging_prio_last_written_value); } static void uw_charging_priority_init(struct platform_device *dev) { u8 value; struct uniwill_device_features_t *uw_feats = &uniwill_device_features; if (uw_feats->uniwill_has_charging_prio) uw_charging_prio_loaded = sysfs_create_group(&dev->dev.kobj, &uw_charging_prio_attr_group) == 0; // Read for state init if (uw_charging_prio_loaded) { uw_get_charging_priority(&value); uw_charging_prio_last_written_value = value; } } static bool uw_charging_profile_loaded = false; static bool uw_charging_profile_last_written_value; static ssize_t uw_charging_profiles_available_show(struct device *child, struct device_attribute *attr, char *buffer); static ssize_t uw_charging_profile_show(struct device *child, struct device_attribute *attr, char *buffer); static ssize_t uw_charging_profile_store(struct device *child, struct device_attribute *attr, const char *buffer, size_t size); struct uw_charging_profile_attrs_t { struct device_attribute charging_profiles_available; struct device_attribute charging_profile; } uw_charging_profile_attrs = { .charging_profiles_available = __ATTR(charging_profiles_available, 0444, uw_charging_profiles_available_show, NULL), .charging_profile = __ATTR(charging_profile, 0644, uw_charging_profile_show, uw_charging_profile_store) }; static struct attribute *uw_charging_profile_attrs_list[] = { &uw_charging_profile_attrs.charging_profiles_available.attr, &uw_charging_profile_attrs.charging_profile.attr, NULL }; static struct attribute_group uw_charging_profile_attr_group = { .name = "charging_profile", .attrs = uw_charging_profile_attrs_list }; /* * charging_profile values * 0 => high capacity * 1 => balanced * 2 => stationary */ static int uw_set_charging_profile(u8 charging_profile) { u8 previous_data, next_data; int result; charging_profile = (charging_profile & 0x03) << 4; result = uniwill_read_ec_ram(0x07a6, &previous_data); if (result != 0) return result; next_data = (previous_data & ~(0x03 << 4)) | charging_profile; result = uniwill_write_ec_ram(0x07a6, next_data); if (result == 0) uw_charging_profile_last_written_value = charging_profile; return result; } static int uw_get_charging_profile(u8 *charging_profile) { int result = uniwill_read_ec_ram(0x07a6, charging_profile); if (result == 0) *charging_profile = (*charging_profile >> 4) & 0x03; return result; } static int uw_has_charging_profile(bool *status) { u8 data; int result; bool not_supported_device = false || dmi_match(DMI_BOARD_NAME, "PF5PU1G") || dmi_match(DMI_BOARD_NAME, "LAPQC71A") || dmi_match(DMI_BOARD_NAME, "LAPQC71B") || dmi_match(DMI_PRODUCT_NAME, "A60 MUV") ; if (not_supported_device) { *status = false; return 0; } result = uniwill_read_ec_ram(0x078e, &data); if (result != 0) return -EIO; if (data & (1 << 3)) *status = true; else *status = false; return 0; } static void uw_charging_profile_write_state(void) { if (uw_charging_profile_loaded) uw_set_charging_profile(uw_charging_profile_last_written_value); } static void uw_charging_profile_init(struct platform_device *dev) { u8 value; struct uniwill_device_features_t *uw_feats = &uniwill_device_features; if (uw_feats->uniwill_has_charging_profile) uw_charging_profile_loaded = sysfs_create_group(&dev->dev.kobj, &uw_charging_profile_attr_group) == 0; // Read for state init if (uw_charging_profile_loaded) { uw_get_charging_profile(&value); uw_charging_profile_last_written_value = value; } } struct char_to_u8_t { char* descriptor; u8 value; }; static struct char_to_u8_t charging_profile_options[] = { { .descriptor = "high_capacity", .value = 0x00 }, { .descriptor = "balanced", .value = 0x01 }, { .descriptor = "stationary", .value = 0x02 } }; static ssize_t uw_charging_profiles_available_show(struct device *child, struct device_attribute *attr, char *buffer) { int i, n; n = ARRAY_SIZE(charging_profile_options); for (i = 0; i < n; ++i) { sprintf(buffer + strlen(buffer), "%s", charging_profile_options[i].descriptor); if (i < n - 1) sprintf(buffer + strlen(buffer), " "); else sprintf(buffer + strlen(buffer), "\n"); } return strlen(buffer); } static ssize_t uw_charging_profile_show(struct device *child, struct device_attribute *attr, char *buffer) { u8 charging_profile_value; int i, result; result = uw_get_charging_profile(&charging_profile_value); if (result != 0) return result; for (i = 0; i < ARRAY_SIZE(charging_profile_options); ++i) if (charging_profile_options[i].value == charging_profile_value) { sprintf(buffer, "%s\n", charging_profile_options[i].descriptor); return strlen(buffer); } pr_err("Read charging profile value not matched to a descriptor\n"); return -EIO; } static ssize_t uw_charging_profile_store(struct device *child, struct device_attribute *attr, const char *buffer, size_t size) { u8 charging_profile_value; int i, result; char *buffer_copy; char *charging_profile_descriptor; buffer_copy = kmalloc(size + 1, GFP_KERNEL); strcpy(buffer_copy, buffer); charging_profile_descriptor = strstrip(buffer_copy); for (i = 0; i < ARRAY_SIZE(charging_profile_options); ++i) if (strcmp(charging_profile_options[i].descriptor, charging_profile_descriptor) == 0) { charging_profile_value = charging_profile_options[i].value; break; } kfree(buffer_copy); if (i < ARRAY_SIZE(charging_profile_options)) { // Option found try to set result = uw_set_charging_profile(charging_profile_value); if (result == 0) return size; else return -EIO; } else // Invalid input, not matched to an option return -EINVAL; } static struct char_to_u8_t charging_prio_options[] = { { .descriptor = "charge_battery", .value = 0x00 }, { .descriptor = "performance", .value = 0x01 } }; static ssize_t uw_charging_prios_available_show(struct device *child, struct device_attribute *attr, char *buffer) { int i, n; n = ARRAY_SIZE(charging_prio_options); for (i = 0; i < n; ++i) { sprintf(buffer + strlen(buffer), "%s", charging_prio_options[i].descriptor); if (i < n - 1) sprintf(buffer + strlen(buffer), " "); else sprintf(buffer + strlen(buffer), "\n"); } return strlen(buffer); } static ssize_t uw_charging_prio_show(struct device *child, struct device_attribute *attr, char *buffer) { u8 charging_prio_value; int i, result; result = uw_get_charging_priority(&charging_prio_value); if (result != 0) return result; for (i = 0; i < ARRAY_SIZE(charging_prio_options); ++i) if (charging_prio_options[i].value == charging_prio_value) { sprintf(buffer, "%s\n", charging_prio_options[i].descriptor); return strlen(buffer); } pr_err("Read charging prio value not matched to a descriptor\n"); return -EIO; } static ssize_t uw_charging_prio_store(struct device *child, struct device_attribute *attr, const char *buffer, size_t size) { u8 charging_prio_value; int i, result; char *buffer_copy; char *charging_prio_descriptor; buffer_copy = kmalloc(size + 1, GFP_KERNEL); strcpy(buffer_copy, buffer); charging_prio_descriptor = strstrip(buffer_copy); for (i = 0; i < ARRAY_SIZE(charging_prio_options); ++i) if (strcmp(charging_prio_options[i].descriptor, charging_prio_descriptor) == 0) { charging_prio_value = charging_prio_options[i].value; break; } kfree(buffer_copy); if (i < ARRAY_SIZE(charging_prio_options)) { // Option found try to set result = uw_set_charging_priority(charging_prio_value); if (result == 0) return size; else return -EIO; } else // Invalid input, not matched to an option return -EINVAL; } struct uniwill_device_features_t *uniwill_get_device_features(void) { struct uniwill_device_features_t *uw_feats = &uniwill_device_features; u32 status; bool feats_loaded; if (uw_feats_loaded) return uw_feats; feats_loaded = true; status = uniwill_read_ec_ram(0x0740, &uw_feats->model); if (status != 0) { uw_feats->model = 0; feats_loaded = false; } uw_feats->uniwill_profile_v1_two_profs = false || dmi_match(DMI_BOARD_NAME, "PF5PU1G") || dmi_match(DMI_BOARD_NAME, "PULSE1401") || dmi_match(DMI_BOARD_NAME, "PULSE1501") ; uw_feats->uniwill_profile_v1_three_profs = false // Devices with "classic" profile support || dmi_match(DMI_BOARD_NAME, "POLARIS1501A1650TI") || dmi_match(DMI_BOARD_NAME, "POLARIS1501A2060") || dmi_match(DMI_BOARD_NAME, "POLARIS1501I1650TI") || dmi_match(DMI_BOARD_NAME, "POLARIS1501I2060") || dmi_match(DMI_BOARD_NAME, "POLARIS1701A1650TI") || dmi_match(DMI_BOARD_NAME, "POLARIS1701A2060") || dmi_match(DMI_BOARD_NAME, "POLARIS1701I1650TI") || dmi_match(DMI_BOARD_NAME, "POLARIS1701I2060") // Note: XMG Fusion removed for now, seem to have // neither same power profile control nor TDP set //|| dmi_match(DMI_BOARD_NAME, "LAPQC71A") //|| dmi_match(DMI_BOARD_NAME, "LAPQC71B") //|| dmi_match(DMI_PRODUCT_NAME, "A60 MUV") ; uw_feats->uniwill_profile_v1_three_profs_leds_only = false // Devices where profile mainly controls power profile LED status #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 18, 0) || dmi_match(DMI_PRODUCT_SKU, "POLARIS1XA02") || dmi_match(DMI_PRODUCT_SKU, "POLARIS1XI02") || dmi_match(DMI_PRODUCT_SKU, "POLARIS1XA03") || dmi_match(DMI_PRODUCT_SKU, "POLARIS1XI03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XA03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI04") || dmi_match(DMI_PRODUCT_SKU, "STEPOL1XA04") #endif ; uw_feats->uniwill_profile_v1 = uw_feats->uniwill_profile_v1_two_profs || uw_feats->uniwill_profile_v1_three_profs; if (uw_has_charging_priority(&uw_feats->uniwill_has_charging_prio) != 0) feats_loaded = false; if (uw_has_charging_profile(&uw_feats->uniwill_has_charging_profile) != 0) feats_loaded = false; if (feats_loaded) pr_debug("feats loaded\n"); else pr_debug("feats not yet loaded\n"); uw_feats_loaded = feats_loaded; return uw_feats; } EXPORT_SYMBOL(uniwill_get_device_features); static int uniwill_keyboard_probe(struct platform_device *dev) { u32 i; u8 data; int status; struct uniwill_device_features_t *uw_feats = uniwill_get_device_features(); // FIXME Hard set balanced profile until we have implemented a way to // switch it while tuxedo_io is loaded // uw_ec_write_addr(0x51, 0x07, 0x00, 0x00, ®_write_return); uniwill_write_ec_ram(0x0751, 0x00); if (uw_feats->uniwill_profile_v1) { // Set manual-mode fan-curve in 0x0743 - 0x0747 // Some kind of default fan-curve is stored in 0x0786 - 0x078a: Using it to initialize manual-mode fan-curve for (i = 0; i < 5; ++i) { uniwill_read_ec_ram(0x0786 + i, &data); uniwill_write_ec_ram(0x0743 + i, data); } } else { // Activate NVIDIA Dynamic Boost uniwill_write_ec_ram(0x0746, 0x19); uniwill_write_ec_ram(0x0745, 0x23); uniwill_write_ec_ram(0x0743, 0x03); } // Enable manual mode uniwill_write_ec_ram(0x0741, 0x01); // Zero second fan temp for detection uniwill_write_ec_ram(0x044f, 0x00); status = register_keyboard_notifier(&keyboard_notifier_block); uw_kbd_bl_init(dev); status = uw_lightbar_init(dev); uw_lightbar_loaded = (status >= 0); uw_charging_priority_init(dev); uw_charging_profile_init(dev); return 0; } static int uniwill_keyboard_remove(struct platform_device *dev) { if (uw_charging_prio_loaded) sysfs_remove_group(&dev->dev.kobj, &uw_charging_prio_attr_group); if (uw_charging_profile_loaded) sysfs_remove_group(&dev->dev.kobj, &uw_charging_profile_attr_group); uniwill_leds_remove(dev); // Restore previous backlight enable state if (uniwill_kbd_bl_enable_state_on_start != 0xff) { uniwill_write_kbd_bl_enable(uniwill_kbd_bl_enable_state_on_start); } unregister_keyboard_notifier(&keyboard_notifier_block); del_timer(&uw_kbd_bl_init_timer); if (uw_lightbar_loaded) uw_lightbar_remove(dev); // Disable manual mode uniwill_write_ec_ram(0x0741, 0x00); return 0; } static int uniwill_keyboard_suspend(struct platform_device *dev, pm_message_t state) { uniwill_write_kbd_bl_enable(0); return 0; } static int uniwill_keyboard_resume(struct platform_device *dev) { uniwill_leds_restore_state_extern(); uniwill_write_kbd_bl_enable(1); return 0; } static struct platform_driver platform_driver_uniwill = { .remove = uniwill_keyboard_remove, .suspend = uniwill_keyboard_suspend, .resume = uniwill_keyboard_resume, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, }, }; struct tuxedo_keyboard_driver uniwill_keyboard_driver = { .platform_driver = &platform_driver_uniwill, .probe = uniwill_keyboard_probe, .key_map = uniwill_wmi_keymap, }; #endif // UNIWILL_KEYBOARD_H