/*! * Copyright (c) 2019-2022 TUXEDO Computers GmbH * * This file is part of tuxedo-io. * * tuxedo-io is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. If not, see . */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include "../clevo_interfaces.h" #include "../uniwill_interfaces.h" #include "tuxedo_io_ioctl.h" MODULE_DESCRIPTION("Hardware interface for TUXEDO laptops"); MODULE_AUTHOR("TUXEDO Computers GmbH "); MODULE_VERSION("0.3.0"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CLEVO_INTERFACES(); MODULE_ALIAS("wmi:" CLEVO_WMI_METHOD_GUID); MODULE_ALIAS("wmi:" UNIWILL_WMI_MGMT_GUID_BA); MODULE_ALIAS("wmi:" UNIWILL_WMI_MGMT_GUID_BB); MODULE_ALIAS("wmi:" UNIWILL_WMI_MGMT_GUID_BC); // Initialized in module init, global for ioctl interface static u32 id_check_clevo; static u32 id_check_uniwill; static struct uniwill_device_features_t *uw_feats; /** * strstr version of dmi_match */ static bool dmi_string_in(enum dmi_field f, const char *str) { const char *info = dmi_get_system_info(f); if (info == NULL || str == NULL) return info == str; return strstr(info, str) != NULL; } static u32 clevo_identify(void) { return clevo_get_active_interface_id(NULL) == 0 ? 1 : 0; } /* * TDP boundary definitions per device */ static int tdp_min_ph4tux[] = { 0x05, 0x05, 0x00 }; static int tdp_max_ph4tux[] = { 0x26, 0x26, 0x00 }; static int tdp_min_ph4trx[] = { 0x05, 0x05, 0x00 }; static int tdp_max_ph4trx[] = { 0x32, 0x32, 0x00 }; static int tdp_min_ph4tqx[] = { 0x05, 0x05, 0x00 }; static int tdp_max_ph4tqx[] = { 0x32, 0x32, 0x00 }; static int tdp_min_ph4axx[] = { 0x05, 0x05, 0x00 }; static int tdp_max_ph4axx[] = { 0x2d, 0x3c, 0x00 }; static int tdp_min_pfxluxg[] = { 0x05, 0x05, 0x05 }; static int tdp_max_pfxluxg[] = { 0x23, 0x23, 0x28 }; static int tdp_min_gmxngxx[] = { 0x05, 0x05, 0x05 }; static int tdp_max_gmxngxx[] = { 0x50, 0x50, 0x5f }; static int tdp_min_gmxmgxx[] = { 0x05, 0x05, 0x05 }; static int tdp_max_gmxmgxx[] = { 0x78, 0x78, 0xc8 }; static int tdp_min_gmxtgxx[] = { 0x05, 0x05, 0x05 }; static int tdp_max_gmxtgxx[] = { 0x78, 0x78, 0xc8 }; static int tdp_min_gmxzgxx[] = { 0x05, 0x05, 0x05 }; static int tdp_max_gmxzgxx[] = { 0x50, 0x50, 0x5f }; static int tdp_min_gmxagxx[] = { 0x05, 0x05, 0x05 }; static int tdp_max_gmxagxx[] = { 0x78, 0x78, 0xd7 }; static int tdp_min_gmxrgxx[] = { 0x05, 0x05, 0x05 }; static int tdp_max_gmxrgxx[] = { 0x64, 0x64, 0x6e }; static int *tdp_min_defs = NULL; static int *tdp_max_defs = NULL; void uw_id_tdp(void) { if (uw_feats->model == UW_MODEL_PH4TUX) { tdp_min_defs = tdp_min_ph4tux; tdp_max_defs = tdp_max_ph4tux; } else if (uw_feats->model == UW_MODEL_PH4TRX) { tdp_min_defs = tdp_min_ph4trx; tdp_max_defs = tdp_max_ph4trx; } else if (uw_feats->model == UW_MODEL_PH4TQF) { tdp_min_defs = tdp_min_ph4tqx; tdp_max_defs = tdp_max_ph4tqx; } else if (uw_feats->model == UW_MODEL_PH4AQF_ARX) { tdp_min_defs = tdp_min_ph4axx; tdp_max_defs = tdp_max_ph4axx; #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 18, 0) } else if (dmi_match(DMI_PRODUCT_SKU, "PULSE1502")) { tdp_min_defs = tdp_min_pfxluxg; tdp_max_defs = tdp_max_pfxluxg; } else if (dmi_match(DMI_PRODUCT_SKU, "POLARIS1XA02")) { tdp_min_defs = tdp_min_gmxngxx; tdp_max_defs = tdp_max_gmxngxx; } else if (dmi_match(DMI_PRODUCT_SKU, "POLARIS1XI02")) { tdp_min_defs = tdp_min_gmxmgxx; tdp_max_defs = tdp_max_gmxmgxx; } else if (dmi_match(DMI_PRODUCT_SKU, "POLARIS1XI03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI03")) { tdp_min_defs = tdp_min_gmxtgxx; tdp_max_defs = tdp_max_gmxtgxx; } else if (dmi_match(DMI_PRODUCT_SKU, "POLARIS1XA03") || dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XA03")) { tdp_min_defs = tdp_min_gmxzgxx; tdp_max_defs = tdp_max_gmxzgxx; } else if (dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI04")) { tdp_min_defs = tdp_min_gmxagxx; tdp_max_defs = tdp_max_gmxagxx; } else if (dmi_match(DMI_PRODUCT_SKU, "STEPOL1XA04")) { tdp_min_defs = tdp_min_gmxrgxx; tdp_max_defs = tdp_max_gmxrgxx; #endif } else { tdp_min_defs = NULL; tdp_max_defs = NULL; } } static u32 uniwill_identify(void) { uw_feats = uniwill_get_device_features(); uw_id_tdp(); return uniwill_get_active_interface_id(NULL) == 0 ? 1 : 0; } /*static int fop_open(struct inode *inode, struct file *file) { return 0; } static int fop_release(struct inode *inode, struct file *file) { return 0; }*/ static long clevo_ioctl_interface(struct file *file, unsigned int cmd, unsigned long arg) { u32 result = 0, status; u32 copy_result; u32 argument = (u32) arg; u32 clevo_arg; const char str_no_if[] = ""; char *str_clevo_if; switch (cmd) { case R_CL_HW_IF_STR: if (clevo_get_active_interface_id(&str_clevo_if) == 0) { copy_result = copy_to_user((char *) arg, str_clevo_if, strlen(str_clevo_if) + 1); } else { copy_result = copy_to_user((char *) arg, str_no_if, strlen(str_no_if) + 1); } break; case R_CL_FANINFO1: status = clevo_evaluate_method(CLEVO_CMD_GET_FANINFO1, 0, &result); copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result)); break; case R_CL_FANINFO2: status = clevo_evaluate_method(CLEVO_CMD_GET_FANINFO2, 0, &result); copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result)); break; case R_CL_FANINFO3: status = clevo_evaluate_method(CLEVO_CMD_GET_FANINFO3, 0, &result); copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result)); break; /*case R_CL_FANINFO4: status = clevo_evaluate_method(CLEVO_CMD_GET_FANINFO4, 0); copy_to_user((int32_t *) arg, &result, sizeof(result)); break;*/ case R_CL_WEBCAM_SW: status = clevo_evaluate_method(CLEVO_CMD_GET_WEBCAM_SW, 0, &result); copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result)); break; case R_CL_FLIGHTMODE_SW: status = clevo_evaluate_method(CLEVO_CMD_GET_FLIGHTMODE_SW, 0, &result); copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result)); break; case R_CL_TOUCHPAD_SW: status = clevo_evaluate_method(CLEVO_CMD_GET_TOUCHPAD_SW, 0, &result); copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result)); break; } switch (cmd) { case W_CL_FANSPEED: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); clevo_evaluate_method(CLEVO_CMD_SET_FANSPEED_VALUE, argument, &result); // Note: Delay needed to let hardware catch up with the written value. // No known ready flag. If the value is read too soon, the old value // will still be read out. // (Theoretically needed for other methods as well.) // Can it be lower? 50ms is too low msleep(100); break; case W_CL_FANAUTO: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); clevo_evaluate_method(CLEVO_CMD_SET_FANSPEED_AUTO, argument, &result); break; case W_CL_WEBCAM_SW: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); status = clevo_evaluate_method(CLEVO_CMD_GET_WEBCAM_SW, 0, &result); // Only set status if it isn't already the right value // (workaround for old and/or buggy WMI interfaces that toggle on write) if ((argument & 0x01) != (result & 0x01)) { clevo_evaluate_method(CLEVO_CMD_SET_WEBCAM_SW, argument, &result); } break; case W_CL_FLIGHTMODE_SW: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); clevo_evaluate_method(CLEVO_CMD_SET_FLIGHTMODE_SW, argument, &result); break; case W_CL_TOUCHPAD_SW: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); clevo_evaluate_method(CLEVO_CMD_SET_TOUCHPAD_SW, argument, &result); break; case W_CL_PERF_PROFILE: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); clevo_arg = (CLEVO_OPT_SUBCMD_SET_PERF_PROF << 0x18) | (argument & 0xff); clevo_evaluate_method(CLEVO_CMD_OPT, clevo_arg, &result); break; } return 0; } static int has_universal_ec_fan_control(void) { int ret; u8 data; ret = uniwill_read_ec_ram(0x078e, &data); if (ret < 0) { return ret; } return (data >> 6) & 1; } static int set_full_fan_mode(bool enable) { u8 mode_data; uniwill_read_ec_ram(0x0751, &mode_data); if (enable && !(mode_data & 0x40)) { // If not "full fan mode" (i.e. 0x40 bit not set) switch to it (required for old fancontrol) return uniwill_write_ec_ram(0x0751, mode_data | 0x40); } else if (mode_data & 0x40){ // If "full fan mode" (i.e. 0x40 bit set) turn it off (required for new fancontrol) return uniwill_write_ec_ram(0x0751, mode_data & ~0x40); } return 0; } static bool fans_initialized = false; static int uw_init_fan(void) { int i; u16 addr_use_custom_fan_table_0 = 0x07c5; // use different tables for both fans (0x0f00-0x0f2f and 0x0f30-0x0f5f respectivly) u16 addr_use_custom_fan_table_1 = 0x07c6; // enable 0x0fxx fantables u8 offset_use_custom_fan_table_0 = 7; u8 offset_use_custom_fan_table_1 = 2; u8 value_use_custom_fan_table_0; u8 value_use_custom_fan_table_1; u16 addr_cpu_custom_fan_table_end_temp = 0x0f00; u16 addr_cpu_custom_fan_table_start_temp = 0x0f10; u16 addr_cpu_custom_fan_table_fan_speed = 0x0f20; u16 addr_gpu_custom_fan_table_end_temp = 0x0f30; u16 addr_gpu_custom_fan_table_start_temp = 0x0f40; u16 addr_gpu_custom_fan_table_fan_speed = 0x0f50; if (!fans_initialized && (has_universal_ec_fan_control() == 1)) { set_full_fan_mode(false); uniwill_read_ec_ram(addr_use_custom_fan_table_0, &value_use_custom_fan_table_0); if (!((value_use_custom_fan_table_0 >> offset_use_custom_fan_table_0) & 1)) { uniwill_write_ec_ram_with_retry(addr_use_custom_fan_table_0, value_use_custom_fan_table_0 + (1 << offset_use_custom_fan_table_0), 3); } uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_end_temp, 0xff, 3); uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_start_temp, 0x00, 3); uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_fan_speed, 0x00, 3); uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_end_temp, 0xff, 3); uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_start_temp, 0x00, 3); uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_fan_speed, 0x00, 3); for (i = 0x1; i <= 0xf; ++i) { uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_end_temp + i, 0xff, 3); uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_start_temp + i, 0xff, 3); uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_fan_speed + i, 0x00, 3); uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_end_temp + i, 0xff, 3); uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_start_temp + i, 0xff, 3); uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_fan_speed + i, 0x00, 3); } uniwill_read_ec_ram(addr_use_custom_fan_table_1, &value_use_custom_fan_table_1); if (!((value_use_custom_fan_table_1 >> offset_use_custom_fan_table_1) & 1)) { uniwill_write_ec_ram_with_retry(addr_use_custom_fan_table_1, value_use_custom_fan_table_1 + (1 << offset_use_custom_fan_table_1), 3); } } fans_initialized = true; return 0; } static u32 uw_set_fan(u32 fan_index, u8 fan_speed) { u32 i; u8 mode_data; u16 addr_fan0 = 0x1804; u16 addr_fan1 = 0x1809; u16 addr_for_fan; u16 addr_cpu_custom_fan_table_fan_speed = 0x0f20; u16 addr_gpu_custom_fan_table_fan_speed = 0x0f50; if (has_universal_ec_fan_control() == 1) { uw_init_fan(); if (fan_index == 0) addr_for_fan = addr_cpu_custom_fan_table_fan_speed; else if (fan_index == 1) addr_for_fan = addr_gpu_custom_fan_table_fan_speed; else return -EINVAL; uniwill_write_ec_ram(addr_for_fan, fan_speed & 0xff); } else { // old workaround using full fan mode if (fan_index == 0) addr_for_fan = addr_fan0; else if (fan_index == 1) addr_for_fan = addr_fan1; else return -EINVAL; // Check current mode uniwill_read_ec_ram(0x0751, &mode_data); if (!(mode_data & 0x40)) { // If not "full fan mode" (i.e. 0x40 bit set) switch to it (required for fancontrol) set_full_fan_mode(true); // Attempt to write both fans as quick as possible before complete ramp-up pr_debug("prevent ramp-up start\n"); for (i = 0; i < 10; ++i) { uniwill_write_ec_ram(addr_fan0, fan_speed & 0xff); uniwill_write_ec_ram(addr_fan1, fan_speed & 0xff); msleep(10); } pr_debug("prevent ramp-up done\n"); } else { // Otherwise just set the chosen fan uniwill_write_ec_ram(addr_for_fan, fan_speed & 0xff); } } return 0; } static u32 uw_set_fan_auto(void) { u8 mode_data; if (has_universal_ec_fan_control() == 1) { } else { // Get current mode uniwill_read_ec_ram(0x0751, &mode_data); // Switch off "full fan mode" (i.e. unset 0x40 bit) uniwill_write_ec_ram(0x0751, mode_data & 0xbf); } return 0; } static int uw_get_tdp_min(u8 tdp_index) { if (tdp_index > 2) return -EINVAL; if (tdp_min_defs == NULL) return -ENODEV; if (tdp_min_defs[tdp_index] <= 0) { return -ENODEV; } return tdp_min_defs[tdp_index]; } static int uw_get_tdp_max(u8 tdp_index) { if (tdp_index > 2) return -EINVAL; if (tdp_max_defs == NULL) return -ENODEV; if (tdp_max_defs[tdp_index] <= 0) { return -ENODEV; } return tdp_max_defs[tdp_index]; } static int uw_get_tdp(u8 tdp_index) { u8 tdp_data; u16 tdp_base_addr = 0x0783; u16 tdp_current_addr = tdp_base_addr + tdp_index; int status; // Use min tdp to detect support for chosen tdp parameter int min_tdp_status = uw_get_tdp_min(tdp_index); if (min_tdp_status < 0) return min_tdp_status; status = uniwill_read_ec_ram(tdp_current_addr, &tdp_data); if (status < 0) return status; return tdp_data; } static int uw_set_tdp(u8 tdp_index, u8 tdp_data) { int tdp_min, tdp_max; u16 tdp_base_addr = 0x0783; u16 tdp_current_addr = tdp_base_addr + tdp_index; // Use min tdp to detect support for chosen tdp parameter int min_tdp_status = uw_get_tdp_min(tdp_index); if (min_tdp_status < 0) return min_tdp_status; tdp_min = uw_get_tdp_min(tdp_index); tdp_max = uw_get_tdp_max(tdp_index); if (tdp_data < tdp_min || tdp_data > tdp_max) return -EINVAL; uniwill_write_ec_ram(tdp_current_addr, tdp_data); return 0; } /** * Set profile 1-3 to 0xa0, 0x00 or 0x10 depending on * device support. */ static u32 uw_set_performance_profile_v1(u8 profile_index) { u8 current_value = 0x00, next_value; u8 clear_bits = 0xa0 | 0x10; u32 result; result = uniwill_read_ec_ram(0x0751, ¤t_value); if (result >= 0) { next_value = current_value & ~clear_bits; switch (profile_index) { case 0x01: next_value |= 0xa0; break; case 0x02: next_value |= 0x00; break; case 0x03: next_value |= 0x10; break; default: result = -EINVAL; break; } if (result != -EINVAL) { result = uniwill_write_ec_ram(0x0751, next_value); } } return result; } static long uniwill_ioctl_interface(struct file *file, unsigned int cmd, unsigned long arg) { u32 result = 0; u32 copy_result; u32 argument; u8 byte_data; const char str_no_if[] = ""; char *str_uniwill_if; #ifdef DEBUG union uw_ec_read_return reg_read_return; union uw_ec_write_return reg_write_return; u32 uw_arg[10]; u32 uw_result[10]; int i; for (i = 0; i < 10; ++i) { uw_result[i] = 0xdeadbeef; } #endif switch (cmd) { case R_UW_HW_IF_STR: if (uniwill_get_active_interface_id(&str_uniwill_if) == 0) { copy_result = copy_to_user((char *) arg, str_uniwill_if, strlen(str_uniwill_if) + 1); } else { copy_result = copy_to_user((char *) arg, str_no_if, strlen(str_no_if) + 1); } break; case R_UW_MODEL_ID: result = uw_feats->model; copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_FANSPEED: uniwill_read_ec_ram(0x1804, &byte_data); result = byte_data; copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_FANSPEED2: uniwill_read_ec_ram(0x1809, &byte_data); result = byte_data; copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_FAN_TEMP: uniwill_read_ec_ram(0x043e, &byte_data); result = byte_data; copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_FAN_TEMP2: uniwill_read_ec_ram(0x044f, &byte_data); result = byte_data; copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_MODE: uniwill_read_ec_ram(0x0751, &byte_data); result = byte_data; copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_MODE_ENABLE: uniwill_read_ec_ram(0x0741, &byte_data); result = byte_data; copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_FANS_OFF_AVAILABLE: result = has_universal_ec_fan_control(); if (result == 1) { result = 0; } else if (result == 0) { result = 1; } copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_FANS_MIN_SPEED: result = has_universal_ec_fan_control(); if (result == 1) { result = 20; } else if (result == 0) { result = 0; } copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP0: result = uw_get_tdp(0); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP1: result = uw_get_tdp(1); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP2: result = uw_get_tdp(2); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP0_MIN: result = uw_get_tdp_min(0); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP1_MIN: result = uw_get_tdp_min(1); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP2_MIN: result = uw_get_tdp_min(2); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP0_MAX: result = uw_get_tdp_max(0); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP1_MAX: result = uw_get_tdp_max(1); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_TDP2_MAX: result = uw_get_tdp_max(2); copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; case R_UW_PROFS_AVAILABLE: result = 0; if (uw_feats->uniwill_profile_v1_two_profs) result = 2; else if (uw_feats->uniwill_profile_v1_three_profs || uw_feats->uniwill_profile_v1_three_profs_leds_only) result = 3; copy_result = copy_to_user((void *) arg, &result, sizeof(result)); break; #ifdef DEBUG case R_TF_BC: copy_result = copy_from_user(&uw_arg, (void *) arg, sizeof(uw_arg)); reg_read_return.dword = 0; result = uniwill_read_ec_ram((uw_arg[1] << 8) | uw_arg[0], ®_read_return.bytes.data_low); copy_result = copy_to_user((void *) arg, ®_read_return.dword, sizeof(reg_read_return.dword)); // pr_info("R_TF_BC args [%0#2x, %0#2x, %0#2x, %0#2x]\n", uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3]); /*if (uniwill_ec_direct) { result = uw_ec_read_addr_direct(uw_arg[0], uw_arg[1], ®_read_return); copy_result = copy_to_user((void *) arg, ®_read_return.dword, sizeof(reg_read_return.dword)); } else { result = uw_wmi_ec_evaluate(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], 1, uw_result); copy_result = copy_to_user((void *) arg, &uw_result, sizeof(uw_result)); }*/ break; #endif } switch (cmd) { case W_UW_FANSPEED: // Get fan speed argument copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); uw_set_fan(0, argument); break; case W_UW_FANSPEED2: // Get fan speed argument copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); uw_set_fan(1, argument); break; case W_UW_MODE: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); uniwill_write_ec_ram(0x0751, argument & 0xff); break; case W_UW_MODE_ENABLE: // Note: Is for the moment set and cleared on init/exit of module (uniwill mode) /* copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); uniwill_write_ec_ram(0x0741, argument & 0x01); */ break; case W_UW_FANAUTO: uw_set_fan_auto(); break; case W_UW_TDP0: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); uw_set_tdp(0, argument); break; case W_UW_TDP1: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); uw_set_tdp(1, argument); break; case W_UW_TDP2: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); uw_set_tdp(2, argument); break; case W_UW_PERF_PROF: copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument)); uw_set_performance_profile_v1(argument); break; #ifdef DEBUG case W_TF_BC: reg_write_return.dword = 0; copy_result = copy_from_user(&uw_arg, (void *) arg, sizeof(uw_arg)); uniwill_write_ec_ram((uw_arg[1] << 8) | uw_arg[0], uw_arg[2]); copy_result = copy_to_user((void *) arg, ®_write_return.dword, sizeof(reg_write_return.dword)); /*if (uniwill_ec_direct) { result = uw_ec_write_addr_direct(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], ®_write_return); copy_result = copy_to_user((void *) arg, ®_write_return.dword, sizeof(reg_write_return.dword)); } else { result = uw_wmi_ec_evaluate(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], 0, uw_result); copy_result = copy_to_user((void *) arg, &uw_result, sizeof(uw_result)); reg_write_return.dword = uw_result[0]; }*/ /*pr_info("data_high %0#2x\n", reg_write_return.bytes.data_high); pr_info("data_low %0#2x\n", reg_write_return.bytes.data_low); pr_info("addr_high %0#2x\n", reg_write_return.bytes.addr_high); pr_info("addr_low %0#2x\n", reg_write_return.bytes.addr_low);*/ break; #endif } return 0; } static long fop_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { u32 status; // u32 result = 0; u32 copy_result; const char *module_version = THIS_MODULE->version; switch (cmd) { case R_MOD_VERSION: copy_result = copy_to_user((char *) arg, module_version, strlen(module_version) + 1); break; // Hardware id checks, 1 = positive, 0 = negative case R_HWCHECK_CL: id_check_clevo = clevo_identify(); copy_result = copy_to_user((void *) arg, (void *) &id_check_clevo, sizeof(id_check_clevo)); break; case R_HWCHECK_UW: id_check_uniwill = uniwill_identify(); copy_result = copy_to_user((void *) arg, (void *) &id_check_uniwill, sizeof(id_check_uniwill)); break; } status = clevo_ioctl_interface(file, cmd, arg); if (status != 0) return status; status = uniwill_ioctl_interface(file, cmd, arg); if (status != 0) return status; return 0; } static struct file_operations fops_dev = { .owner = THIS_MODULE, .unlocked_ioctl = fop_ioctl // .open = fop_open, // .release = fop_release }; struct class *tuxedo_io_device_class; dev_t tuxedo_io_device_handle; static struct cdev tuxedo_io_cdev; static int __init tuxedo_io_init(void) { int err; // Hardware identification id_check_clevo = clevo_identify(); id_check_uniwill = uniwill_identify(); #ifdef DEBUG if (id_check_clevo == 0 && id_check_uniwill == 0) { pr_debug("No matching hardware found on module load\n"); } #endif err = alloc_chrdev_region(&tuxedo_io_device_handle, 0, 1, "tuxedo_io_cdev"); if (err != 0) { pr_err("Failed to allocate chrdev region\n"); return err; } cdev_init(&tuxedo_io_cdev, &fops_dev); err = (cdev_add(&tuxedo_io_cdev, tuxedo_io_device_handle, 1)); if (err < 0) { pr_err("Failed to add cdev\n"); unregister_chrdev_region(tuxedo_io_device_handle, 1); } tuxedo_io_device_class = class_create(THIS_MODULE, "tuxedo_io"); device_create(tuxedo_io_device_class, NULL, tuxedo_io_device_handle, NULL, "tuxedo_io"); pr_debug("Module init successful\n"); return 0; } static void __exit tuxedo_io_exit(void) { device_destroy(tuxedo_io_device_class, tuxedo_io_device_handle); class_destroy(tuxedo_io_device_class); cdev_del(&tuxedo_io_cdev); unregister_chrdev_region(tuxedo_io_device_handle, 1); pr_debug("Module exit\n"); } module_init(tuxedo_io_init); module_exit(tuxedo_io_exit);