clevo-keyboard/src/tuxedo_io/tuxedo_io.c
2022-10-17 16:04:54 +00:00

838 lines
26 KiB
C

/*!
* Copyright (c) 2019-2022 TUXEDO Computers GmbH <tux@tuxedocomputers.com>
*
* This file is part of tuxedo-io.
*
* tuxedo-io is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see <https://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/ioctl.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/version.h>
#include <linux/dmi.h>
#include "../clevo_interfaces.h"
#include "../uniwill_interfaces.h"
#include "tuxedo_io_ioctl.h"
MODULE_DESCRIPTION("Hardware interface for TUXEDO laptops");
MODULE_AUTHOR("TUXEDO Computers GmbH <tux@tuxedocomputers.com>");
MODULE_VERSION("0.3.1");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CLEVO_INTERFACES();
MODULE_ALIAS("wmi:" CLEVO_WMI_METHOD_GUID);
MODULE_ALIAS("wmi:" UNIWILL_WMI_MGMT_GUID_BA);
MODULE_ALIAS("wmi:" UNIWILL_WMI_MGMT_GUID_BB);
MODULE_ALIAS("wmi:" UNIWILL_WMI_MGMT_GUID_BC);
// Initialized in module init, global for ioctl interface
static u32 id_check_clevo;
static u32 id_check_uniwill;
static struct uniwill_device_features_t *uw_feats;
/**
* strstr version of dmi_match
*/
static bool dmi_string_in(enum dmi_field f, const char *str)
{
const char *info = dmi_get_system_info(f);
if (info == NULL || str == NULL)
return info == str;
return strstr(info, str) != NULL;
}
static u32 clevo_identify(void)
{
return clevo_get_active_interface_id(NULL) == 0 ? 1 : 0;
}
/*
* TDP boundary definitions per device
*/
static int tdp_min_ph4tux[] = { 0x05, 0x05, 0x00 };
static int tdp_max_ph4tux[] = { 0x26, 0x26, 0x00 };
static int tdp_min_ph4trx[] = { 0x05, 0x05, 0x00 };
static int tdp_max_ph4trx[] = { 0x32, 0x32, 0x00 };
static int tdp_min_ph4tqx[] = { 0x05, 0x05, 0x00 };
static int tdp_max_ph4tqx[] = { 0x32, 0x32, 0x00 };
static int tdp_min_ph4axx[] = { 0x05, 0x05, 0x00 };
static int tdp_max_ph4axx[] = { 0x2d, 0x3c, 0x00 };
static int tdp_min_pfxluxg[] = { 0x05, 0x05, 0x05 };
static int tdp_max_pfxluxg[] = { 0x23, 0x23, 0x28 };
static int tdp_min_gmxngxx[] = { 0x05, 0x05, 0x05 };
static int tdp_max_gmxngxx[] = { 0x50, 0x50, 0x5f };
static int tdp_min_gmxmgxx[] = { 0x05, 0x05, 0x05 };
static int tdp_max_gmxmgxx[] = { 0x78, 0x78, 0xc8 };
static int tdp_min_gmxtgxx[] = { 0x05, 0x05, 0x05 };
static int tdp_max_gmxtgxx[] = { 0x78, 0x78, 0xc8 };
static int tdp_min_gmxzgxx[] = { 0x05, 0x05, 0x05 };
static int tdp_max_gmxzgxx[] = { 0x50, 0x50, 0x5f };
static int tdp_min_gmxagxx[] = { 0x05, 0x05, 0x05 };
static int tdp_max_gmxagxx[] = { 0x78, 0x78, 0xd7 };
static int tdp_min_gmxrgxx[] = { 0x05, 0x05, 0x05 };
static int tdp_max_gmxrgxx[] = { 0x64, 0x64, 0x6e };
static int *tdp_min_defs = NULL;
static int *tdp_max_defs = NULL;
void uw_id_tdp(void)
{
if (uw_feats->model == UW_MODEL_PH4TUX) {
tdp_min_defs = tdp_min_ph4tux;
tdp_max_defs = tdp_max_ph4tux;
} else if (uw_feats->model == UW_MODEL_PH4TRX) {
tdp_min_defs = tdp_min_ph4trx;
tdp_max_defs = tdp_max_ph4trx;
} else if (uw_feats->model == UW_MODEL_PH4TQF) {
tdp_min_defs = tdp_min_ph4tqx;
tdp_max_defs = tdp_max_ph4tqx;
} else if (uw_feats->model == UW_MODEL_PH4AQF_ARX) {
tdp_min_defs = tdp_min_ph4axx;
tdp_max_defs = tdp_max_ph4axx;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 18, 0)
} else if (dmi_match(DMI_PRODUCT_SKU, "PULSE1502")) {
tdp_min_defs = tdp_min_pfxluxg;
tdp_max_defs = tdp_max_pfxluxg;
} else if (dmi_match(DMI_PRODUCT_SKU, "POLARIS1XA02")) {
tdp_min_defs = tdp_min_gmxngxx;
tdp_max_defs = tdp_max_gmxngxx;
} else if (dmi_match(DMI_PRODUCT_SKU, "POLARIS1XI02")) {
tdp_min_defs = tdp_min_gmxmgxx;
tdp_max_defs = tdp_max_gmxmgxx;
} else if (dmi_match(DMI_PRODUCT_SKU, "POLARIS1XI03")
|| dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI03")) {
tdp_min_defs = tdp_min_gmxtgxx;
tdp_max_defs = tdp_max_gmxtgxx;
} else if (dmi_match(DMI_PRODUCT_SKU, "POLARIS1XA03")
|| dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XA03")) {
tdp_min_defs = tdp_min_gmxzgxx;
tdp_max_defs = tdp_max_gmxzgxx;
} else if (dmi_match(DMI_PRODUCT_SKU, "STELLARIS1XI04")) {
tdp_min_defs = tdp_min_gmxagxx;
tdp_max_defs = tdp_max_gmxagxx;
} else if (dmi_match(DMI_PRODUCT_SKU, "STEPOL1XA04")) {
tdp_min_defs = tdp_min_gmxrgxx;
tdp_max_defs = tdp_max_gmxrgxx;
#endif
} else {
tdp_min_defs = NULL;
tdp_max_defs = NULL;
}
}
static u32 uniwill_identify(void)
{
uw_feats = uniwill_get_device_features();
uw_id_tdp();
return uniwill_get_active_interface_id(NULL) == 0 ? 1 : 0;
}
/*static int fop_open(struct inode *inode, struct file *file)
{
return 0;
}
static int fop_release(struct inode *inode, struct file *file)
{
return 0;
}*/
static long clevo_ioctl_interface(struct file *file, unsigned int cmd, unsigned long arg)
{
u32 result = 0, status;
u32 copy_result;
u32 argument = (u32) arg;
u32 clevo_arg;
const char str_no_if[] = "";
char *str_clevo_if;
switch (cmd) {
case R_CL_HW_IF_STR:
if (clevo_get_active_interface_id(&str_clevo_if) == 0) {
copy_result = copy_to_user((char *) arg, str_clevo_if, strlen(str_clevo_if) + 1);
} else {
copy_result = copy_to_user((char *) arg, str_no_if, strlen(str_no_if) + 1);
}
break;
case R_CL_FANINFO1:
status = clevo_evaluate_method(CLEVO_CMD_GET_FANINFO1, 0, &result);
copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result));
break;
case R_CL_FANINFO2:
status = clevo_evaluate_method(CLEVO_CMD_GET_FANINFO2, 0, &result);
copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result));
break;
case R_CL_FANINFO3:
status = clevo_evaluate_method(CLEVO_CMD_GET_FANINFO3, 0, &result);
copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result));
break;
/*case R_CL_FANINFO4:
status = clevo_evaluate_method(CLEVO_CMD_GET_FANINFO4, 0);
copy_to_user((int32_t *) arg, &result, sizeof(result));
break;*/
case R_CL_WEBCAM_SW:
status = clevo_evaluate_method(CLEVO_CMD_GET_WEBCAM_SW, 0, &result);
copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result));
break;
case R_CL_FLIGHTMODE_SW:
status = clevo_evaluate_method(CLEVO_CMD_GET_FLIGHTMODE_SW, 0, &result);
copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result));
break;
case R_CL_TOUCHPAD_SW:
status = clevo_evaluate_method(CLEVO_CMD_GET_TOUCHPAD_SW, 0, &result);
copy_result = copy_to_user((int32_t *) arg, &result, sizeof(result));
break;
}
switch (cmd) {
case W_CL_FANSPEED:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
clevo_evaluate_method(CLEVO_CMD_SET_FANSPEED_VALUE, argument, &result);
// Note: Delay needed to let hardware catch up with the written value.
// No known ready flag. If the value is read too soon, the old value
// will still be read out.
// (Theoretically needed for other methods as well.)
// Can it be lower? 50ms is too low
msleep(100);
break;
case W_CL_FANAUTO:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
clevo_evaluate_method(CLEVO_CMD_SET_FANSPEED_AUTO, argument, &result);
break;
case W_CL_WEBCAM_SW:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
status = clevo_evaluate_method(CLEVO_CMD_GET_WEBCAM_SW, 0, &result);
// Only set status if it isn't already the right value
// (workaround for old and/or buggy WMI interfaces that toggle on write)
if ((argument & 0x01) != (result & 0x01)) {
clevo_evaluate_method(CLEVO_CMD_SET_WEBCAM_SW, argument, &result);
}
break;
case W_CL_FLIGHTMODE_SW:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
clevo_evaluate_method(CLEVO_CMD_SET_FLIGHTMODE_SW, argument, &result);
break;
case W_CL_TOUCHPAD_SW:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
clevo_evaluate_method(CLEVO_CMD_SET_TOUCHPAD_SW, argument, &result);
break;
case W_CL_PERF_PROFILE:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
clevo_arg = (CLEVO_OPT_SUBCMD_SET_PERF_PROF << 0x18) | (argument & 0xff);
clevo_evaluate_method(CLEVO_CMD_OPT, clevo_arg, &result);
break;
}
return 0;
}
static int has_universal_ec_fan_control(void) {
int ret;
u8 data;
ret = uniwill_read_ec_ram(0x078e, &data);
if (ret < 0) {
return ret;
}
return (data >> 6) & 1;
}
static int set_full_fan_mode(bool enable) {
u8 mode_data;
uniwill_read_ec_ram(0x0751, &mode_data);
if (enable && !(mode_data & 0x40)) {
// If not "full fan mode" (i.e. 0x40 bit not set) switch to it (required for old fancontrol)
return uniwill_write_ec_ram(0x0751, mode_data | 0x40);
}
else if (mode_data & 0x40){
// If "full fan mode" (i.e. 0x40 bit set) turn it off (required for new fancontrol)
return uniwill_write_ec_ram(0x0751, mode_data & ~0x40);
}
return 0;
}
static bool fans_initialized = false;
static int uw_init_fan(void) {
int i;
u16 addr_use_custom_fan_table_0 = 0x07c5; // use different tables for both fans (0x0f00-0x0f2f and 0x0f30-0x0f5f respectivly)
u16 addr_use_custom_fan_table_1 = 0x07c6; // enable 0x0fxx fantables
u8 offset_use_custom_fan_table_0 = 7;
u8 offset_use_custom_fan_table_1 = 2;
u8 value_use_custom_fan_table_0;
u8 value_use_custom_fan_table_1;
u16 addr_cpu_custom_fan_table_end_temp = 0x0f00;
u16 addr_cpu_custom_fan_table_start_temp = 0x0f10;
u16 addr_cpu_custom_fan_table_fan_speed = 0x0f20;
u16 addr_gpu_custom_fan_table_end_temp = 0x0f30;
u16 addr_gpu_custom_fan_table_start_temp = 0x0f40;
u16 addr_gpu_custom_fan_table_fan_speed = 0x0f50;
if (!fans_initialized && (has_universal_ec_fan_control() == 1)) {
set_full_fan_mode(false);
uniwill_read_ec_ram(addr_use_custom_fan_table_0, &value_use_custom_fan_table_0);
if (!((value_use_custom_fan_table_0 >> offset_use_custom_fan_table_0) & 1)) {
uniwill_write_ec_ram_with_retry(addr_use_custom_fan_table_0, value_use_custom_fan_table_0 + (1 << offset_use_custom_fan_table_0), 3);
}
uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_end_temp, 0xff, 3);
uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_start_temp, 0x00, 3);
uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_fan_speed, 0x00, 3);
uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_end_temp, 0xff, 3);
uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_start_temp, 0x00, 3);
uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_fan_speed, 0x00, 3);
for (i = 0x1; i <= 0xf; ++i) {
uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_end_temp + i, 0xff, 3);
uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_start_temp + i, 0xff, 3);
uniwill_write_ec_ram_with_retry(addr_cpu_custom_fan_table_fan_speed + i, 0x00, 3);
uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_end_temp + i, 0xff, 3);
uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_start_temp + i, 0xff, 3);
uniwill_write_ec_ram_with_retry(addr_gpu_custom_fan_table_fan_speed + i, 0x00, 3);
}
uniwill_read_ec_ram(addr_use_custom_fan_table_1, &value_use_custom_fan_table_1);
if (!((value_use_custom_fan_table_1 >> offset_use_custom_fan_table_1) & 1)) {
uniwill_write_ec_ram_with_retry(addr_use_custom_fan_table_1, value_use_custom_fan_table_1 + (1 << offset_use_custom_fan_table_1), 3);
}
}
fans_initialized = true;
return 0;
}
static u32 uw_set_fan(u32 fan_index, u8 fan_speed)
{
u32 i;
u8 mode_data;
u16 addr_fan0 = 0x1804;
u16 addr_fan1 = 0x1809;
u16 addr_for_fan;
u16 addr_cpu_custom_fan_table_fan_speed = 0x0f20;
u16 addr_gpu_custom_fan_table_fan_speed = 0x0f50;
if (has_universal_ec_fan_control() == 1) {
uw_init_fan();
if (fan_index == 0)
addr_for_fan = addr_cpu_custom_fan_table_fan_speed;
else if (fan_index == 1)
addr_for_fan = addr_gpu_custom_fan_table_fan_speed;
else
return -EINVAL;
if (fan_speed == 0) {
// Avoid hard coded EC behaviour: Setting fan speed = 0x00 spins the fan up
// to 0x3c (30%) for 3 minutes before going to 0x00. Setting fan speed = 1
// also causes the fan to stop since on 2020 or later TF devices the
// microcontroller in the fan itself is intelligent enough to not try to
// start up the motor when the speed is to slow. Older devices don't use
// this fan controll anyway, but the else case below.
fan_speed = 1;
}
uniwill_write_ec_ram(addr_for_fan, fan_speed & 0xff);
}
else { // old workaround using full fan mode
if (fan_index == 0)
addr_for_fan = addr_fan0;
else if (fan_index == 1)
addr_for_fan = addr_fan1;
else
return -EINVAL;
// Check current mode
uniwill_read_ec_ram(0x0751, &mode_data);
if (!(mode_data & 0x40)) {
// If not "full fan mode" (i.e. 0x40 bit set) switch to it (required for fancontrol)
set_full_fan_mode(true);
// Attempt to write both fans as quick as possible before complete ramp-up
pr_debug("prevent ramp-up start\n");
for (i = 0; i < 10; ++i) {
uniwill_write_ec_ram(addr_fan0, fan_speed & 0xff);
uniwill_write_ec_ram(addr_fan1, fan_speed & 0xff);
msleep(10);
}
pr_debug("prevent ramp-up done\n");
} else {
// Otherwise just set the chosen fan
uniwill_write_ec_ram(addr_for_fan, fan_speed & 0xff);
}
}
return 0;
}
static u32 uw_set_fan_auto(void)
{
u8 mode_data;
if (has_universal_ec_fan_control() == 1) {
u16 addr_use_custom_fan_table_0 = 0x07c5; // use different tables for both fans (0x0f00-0x0f2f and 0x0f30-0x0f5f respectivly)
u16 addr_use_custom_fan_table_1 = 0x07c6; // enable 0x0fxx fantables
u8 offset_use_custom_fan_table_0 = 7;
u8 offset_use_custom_fan_table_1 = 2;
u8 value_use_custom_fan_table_0;
u8 value_use_custom_fan_table_1;
uniwill_read_ec_ram(addr_use_custom_fan_table_1, &value_use_custom_fan_table_1);
if ((value_use_custom_fan_table_1 >> offset_use_custom_fan_table_1) & 1) {
uniwill_write_ec_ram_with_retry(addr_use_custom_fan_table_1, value_use_custom_fan_table_1 - (1 << offset_use_custom_fan_table_1), 3);
}
uniwill_read_ec_ram(addr_use_custom_fan_table_0, &value_use_custom_fan_table_0);
if ((value_use_custom_fan_table_0 >> offset_use_custom_fan_table_0) & 1) {
uniwill_write_ec_ram_with_retry(addr_use_custom_fan_table_0, value_use_custom_fan_table_0 - (1 << offset_use_custom_fan_table_0), 3);
}
fans_initialized = false;
}
else {
// Get current mode
uniwill_read_ec_ram(0x0751, &mode_data);
// Switch off "full fan mode" (i.e. unset 0x40 bit)
uniwill_write_ec_ram(0x0751, mode_data & 0xbf);
}
return 0;
}
static int uw_get_tdp_min(u8 tdp_index)
{
if (tdp_index > 2)
return -EINVAL;
if (tdp_min_defs == NULL)
return -ENODEV;
if (tdp_min_defs[tdp_index] <= 0) {
return -ENODEV;
}
return tdp_min_defs[tdp_index];
}
static int uw_get_tdp_max(u8 tdp_index)
{
if (tdp_index > 2)
return -EINVAL;
if (tdp_max_defs == NULL)
return -ENODEV;
if (tdp_max_defs[tdp_index] <= 0) {
return -ENODEV;
}
return tdp_max_defs[tdp_index];
}
static int uw_get_tdp(u8 tdp_index)
{
u8 tdp_data;
u16 tdp_base_addr = 0x0783;
u16 tdp_current_addr = tdp_base_addr + tdp_index;
int status;
// Use min tdp to detect support for chosen tdp parameter
int min_tdp_status = uw_get_tdp_min(tdp_index);
if (min_tdp_status < 0)
return min_tdp_status;
status = uniwill_read_ec_ram(tdp_current_addr, &tdp_data);
if (status < 0)
return status;
return tdp_data;
}
static int uw_set_tdp(u8 tdp_index, u8 tdp_data)
{
int tdp_min, tdp_max;
u16 tdp_base_addr = 0x0783;
u16 tdp_current_addr = tdp_base_addr + tdp_index;
// Use min tdp to detect support for chosen tdp parameter
int min_tdp_status = uw_get_tdp_min(tdp_index);
if (min_tdp_status < 0)
return min_tdp_status;
tdp_min = uw_get_tdp_min(tdp_index);
tdp_max = uw_get_tdp_max(tdp_index);
if (tdp_data < tdp_min || tdp_data > tdp_max)
return -EINVAL;
uniwill_write_ec_ram(tdp_current_addr, tdp_data);
return 0;
}
/**
* Set profile 1-3 to 0xa0, 0x00 or 0x10 depending on
* device support.
*/
static u32 uw_set_performance_profile_v1(u8 profile_index)
{
u8 current_value = 0x00, next_value;
u8 clear_bits = 0xa0 | 0x10;
u32 result;
result = uniwill_read_ec_ram(0x0751, &current_value);
if (result >= 0) {
next_value = current_value & ~clear_bits;
switch (profile_index) {
case 0x01:
next_value |= 0xa0;
break;
case 0x02:
next_value |= 0x00;
break;
case 0x03:
next_value |= 0x10;
break;
default:
result = -EINVAL;
break;
}
if (result != -EINVAL) {
result = uniwill_write_ec_ram(0x0751, next_value);
}
}
return result;
}
static long uniwill_ioctl_interface(struct file *file, unsigned int cmd, unsigned long arg)
{
u32 result = 0;
u32 copy_result;
u32 argument;
u8 byte_data;
const char str_no_if[] = "";
char *str_uniwill_if;
#ifdef DEBUG
union uw_ec_read_return reg_read_return;
union uw_ec_write_return reg_write_return;
u32 uw_arg[10];
u32 uw_result[10];
int i;
for (i = 0; i < 10; ++i) {
uw_result[i] = 0xdeadbeef;
}
#endif
switch (cmd) {
case R_UW_HW_IF_STR:
if (uniwill_get_active_interface_id(&str_uniwill_if) == 0) {
copy_result = copy_to_user((char *) arg, str_uniwill_if, strlen(str_uniwill_if) + 1);
} else {
copy_result = copy_to_user((char *) arg, str_no_if, strlen(str_no_if) + 1);
}
break;
case R_UW_MODEL_ID:
result = uw_feats->model;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_FANSPEED:
uniwill_read_ec_ram(0x1804, &byte_data);
result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_FANSPEED2:
uniwill_read_ec_ram(0x1809, &byte_data);
result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_FAN_TEMP:
uniwill_read_ec_ram(0x043e, &byte_data);
result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_FAN_TEMP2:
uniwill_read_ec_ram(0x044f, &byte_data);
result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_MODE:
uniwill_read_ec_ram(0x0751, &byte_data);
result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_MODE_ENABLE:
uniwill_read_ec_ram(0x0741, &byte_data);
result = byte_data;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_FANS_OFF_AVAILABLE:
/*result = has_universal_ec_fan_control();
if (result == 1) {
result = 0;
}
else if (result == 0) {
result = 1;
}*/
result = 1;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_FANS_MIN_SPEED:
/*result = has_universal_ec_fan_control();
if (result == 1) {
result = 20;
}
else if (result == 0) {
result = 0;
}*/
result = 20;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP0:
result = uw_get_tdp(0);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP1:
result = uw_get_tdp(1);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP2:
result = uw_get_tdp(2);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP0_MIN:
result = uw_get_tdp_min(0);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP1_MIN:
result = uw_get_tdp_min(1);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP2_MIN:
result = uw_get_tdp_min(2);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP0_MAX:
result = uw_get_tdp_max(0);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP1_MAX:
result = uw_get_tdp_max(1);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_TDP2_MAX:
result = uw_get_tdp_max(2);
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
case R_UW_PROFS_AVAILABLE:
result = 0;
if (uw_feats->uniwill_profile_v1_two_profs)
result = 2;
else if (uw_feats->uniwill_profile_v1_three_profs || uw_feats->uniwill_profile_v1_three_profs_leds_only)
result = 3;
copy_result = copy_to_user((void *) arg, &result, sizeof(result));
break;
#ifdef DEBUG
case R_TF_BC:
copy_result = copy_from_user(&uw_arg, (void *) arg, sizeof(uw_arg));
reg_read_return.dword = 0;
result = uniwill_read_ec_ram((uw_arg[1] << 8) | uw_arg[0], &reg_read_return.bytes.data_low);
copy_result = copy_to_user((void *) arg, &reg_read_return.dword, sizeof(reg_read_return.dword));
// pr_info("R_TF_BC args [%0#2x, %0#2x, %0#2x, %0#2x]\n", uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3]);
/*if (uniwill_ec_direct) {
result = uw_ec_read_addr_direct(uw_arg[0], uw_arg[1], &reg_read_return);
copy_result = copy_to_user((void *) arg, &reg_read_return.dword, sizeof(reg_read_return.dword));
} else {
result = uw_wmi_ec_evaluate(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], 1, uw_result);
copy_result = copy_to_user((void *) arg, &uw_result, sizeof(uw_result));
}*/
break;
#endif
}
switch (cmd) {
case W_UW_FANSPEED:
// Get fan speed argument
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uw_set_fan(0, argument);
break;
case W_UW_FANSPEED2:
// Get fan speed argument
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uw_set_fan(1, argument);
break;
case W_UW_MODE:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uniwill_write_ec_ram(0x0751, argument & 0xff);
break;
case W_UW_MODE_ENABLE:
// Note: Is for the moment set and cleared on init/exit of module (uniwill mode)
/*
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uniwill_write_ec_ram(0x0741, argument & 0x01);
*/
break;
case W_UW_FANAUTO:
uw_set_fan_auto();
break;
case W_UW_TDP0:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uw_set_tdp(0, argument);
break;
case W_UW_TDP1:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uw_set_tdp(1, argument);
break;
case W_UW_TDP2:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uw_set_tdp(2, argument);
break;
case W_UW_PERF_PROF:
copy_result = copy_from_user(&argument, (int32_t *) arg, sizeof(argument));
uw_set_performance_profile_v1(argument);
break;
#ifdef DEBUG
case W_TF_BC:
reg_write_return.dword = 0;
copy_result = copy_from_user(&uw_arg, (void *) arg, sizeof(uw_arg));
uniwill_write_ec_ram((uw_arg[1] << 8) | uw_arg[0], uw_arg[2]);
copy_result = copy_to_user((void *) arg, &reg_write_return.dword, sizeof(reg_write_return.dword));
/*if (uniwill_ec_direct) {
result = uw_ec_write_addr_direct(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], &reg_write_return);
copy_result = copy_to_user((void *) arg, &reg_write_return.dword, sizeof(reg_write_return.dword));
} else {
result = uw_wmi_ec_evaluate(uw_arg[0], uw_arg[1], uw_arg[2], uw_arg[3], 0, uw_result);
copy_result = copy_to_user((void *) arg, &uw_result, sizeof(uw_result));
reg_write_return.dword = uw_result[0];
}*/
/*pr_info("data_high %0#2x\n", reg_write_return.bytes.data_high);
pr_info("data_low %0#2x\n", reg_write_return.bytes.data_low);
pr_info("addr_high %0#2x\n", reg_write_return.bytes.addr_high);
pr_info("addr_low %0#2x\n", reg_write_return.bytes.addr_low);*/
break;
#endif
}
return 0;
}
static long fop_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
u32 status;
// u32 result = 0;
u32 copy_result;
const char *module_version = THIS_MODULE->version;
switch (cmd) {
case R_MOD_VERSION:
copy_result = copy_to_user((char *) arg, module_version, strlen(module_version) + 1);
break;
// Hardware id checks, 1 = positive, 0 = negative
case R_HWCHECK_CL:
id_check_clevo = clevo_identify();
copy_result = copy_to_user((void *) arg, (void *) &id_check_clevo, sizeof(id_check_clevo));
break;
case R_HWCHECK_UW:
id_check_uniwill = uniwill_identify();
copy_result = copy_to_user((void *) arg, (void *) &id_check_uniwill, sizeof(id_check_uniwill));
break;
}
status = clevo_ioctl_interface(file, cmd, arg);
if (status != 0) return status;
status = uniwill_ioctl_interface(file, cmd, arg);
if (status != 0) return status;
return 0;
}
static struct file_operations fops_dev = {
.owner = THIS_MODULE,
.unlocked_ioctl = fop_ioctl
// .open = fop_open,
// .release = fop_release
};
struct class *tuxedo_io_device_class;
dev_t tuxedo_io_device_handle;
static struct cdev tuxedo_io_cdev;
static int __init tuxedo_io_init(void)
{
int err;
// Hardware identification
id_check_clevo = clevo_identify();
id_check_uniwill = uniwill_identify();
#ifdef DEBUG
if (id_check_clevo == 0 && id_check_uniwill == 0) {
pr_debug("No matching hardware found on module load\n");
}
#endif
err = alloc_chrdev_region(&tuxedo_io_device_handle, 0, 1, "tuxedo_io_cdev");
if (err != 0) {
pr_err("Failed to allocate chrdev region\n");
return err;
}
cdev_init(&tuxedo_io_cdev, &fops_dev);
err = (cdev_add(&tuxedo_io_cdev, tuxedo_io_device_handle, 1));
if (err < 0) {
pr_err("Failed to add cdev\n");
unregister_chrdev_region(tuxedo_io_device_handle, 1);
}
tuxedo_io_device_class = class_create(THIS_MODULE, "tuxedo_io");
device_create(tuxedo_io_device_class, NULL, tuxedo_io_device_handle, NULL, "tuxedo_io");
pr_debug("Module init successful\n");
return 0;
}
static void __exit tuxedo_io_exit(void)
{
device_destroy(tuxedo_io_device_class, tuxedo_io_device_handle);
class_destroy(tuxedo_io_device_class);
cdev_del(&tuxedo_io_cdev);
unregister_chrdev_region(tuxedo_io_device_handle, 1);
pr_debug("Module exit\n");
}
module_init(tuxedo_io_init);
module_exit(tuxedo_io_exit);